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PASSIVE INFRARED SURVEILLANCE: NEW METHODS OF ANALYSIS

I. INTRODUCTION

A. Background

This paper describes an analytical model for predicting
the performance of a particular class of infrared sensors,
generically described as Infrared Search and Truck (IRST)
devices. An IRST system generally con-..sts of one or more
photodetectors located in the focal plane of a scanning
optical telescope, and a complement of signal processing
electronics to process the detected photocurrents. The
signal processors' task is to determine whether or not an
object of a particular type (a "target'") is anywhere in the
sansors' field of view, while keeping the frequency of false
target reports (i.e., the '"Fulse Alarm Rate," FAR) to an
acceptably low level.

The IRST is a nonimaging device, as contrasted with
Forward Looking Infrared (FLIR) imaging systems, (1,2
The search and track device may be required to keep u full
hemisphere (21 steradians) under constant observation, have
8 resolution of one milliradian or less, and operate without
human assistance in a fully autonomous mode tor weeks at o
time. The challenge this presents to the system designer
is magnitied still further by the abundant opportunities
for target/background confusion oftfered by such typical

background scenes as cloudy skies and cities.

Mlnumlprnubmmod July 8, 1979,




Previous attempts to model background effects on IRST
system performance have focused on the Wiener spectrum
approachsa'a)u frequency domain technique originally
developed for calculating the noise variance in communication
circuits. Unfortunately, unlike the noise processes typically
assumed in statistical communication theorygg) the IRST
pliotocurrent is apt to be a highly non-stationary random
process, inadequately characterized simply in terms of its
variance. As the sensor scans across a structured background,
the spatially non-uniform scene brightness is mapped into a
photocurrent whose mean, variance, and other statistics,
are all functions of time. The inadequacy of the Wiener
gspectrum method under theso conditions has been apbreciatéd
for many years.(lo’ll)

The approach taken in this paper brings together and
generalizes some results from the theories of optical
communicntions(lz)and stochustic processes.(13> In particular,
the formulation for ""threshold crossing rates'" originally
derived by RicélS)for stationary processes is generalilzed
in Section III.B to accomodante such nonstationary processes
afs arise when nonuniform scenes are scanned by an IRST
sansor., A crossing rate formulation similar to that of
Section III.Bhas been previously derived by Crumér and

Leadbettersl4) a8 discussed in Appendix D,

e~
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The general crossing rute formalism is particularized
to non-stationary Gaussian statistics in Section I11.C,
appropriate to the description of the photocurrents of

2
present intervest! 12 15)

Some asymptotic approximations to the complete crossing
rate integral are developed in Section III.D.
Numerical examples are given in Section V that
compare a number of approximate formulations with the
rigorous formulation developed in Section III.C. An
original analysis of adaptive threshold IRST sensors is
presented in Section VI,
Previous works describing analysis techniques for
IRST gystems are restricted in applicabiiity to uniform
scenes., Moreover, these works generully prescribe o
totally different formulation for the calculation of
FAR than tor the calculation ot the target detection
probability, PD.(IB)The original contribution of this
paper is two-~told:
1, An original analys}s iy presented that unifies
the previous work, by showing that the earlier
techniques for calculating FAR and PD are actunlly

both derivable as special cases of a more genernl

formulation, eq. (H51l).

2. More importantly, an original method for calculating

FAR and PD is presented that i1s inherently upplicable

to non-uniform ..cenes,

3
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B. A Baslc Threshold Receliver

In order to provide a frame of reference tor the
following discussion it 1s necessary to desicribe a simple

f IRST receiver structure, and to define the parameters used
t to characterize IRST performance.

A basic threshold comparison receiver is shown in
Fig. 1. The current X(t) at the output of the detector is
input fto an electrical filter of transfer function H(L).
The output current Y(t) of the electrical filter is compared
with a threshold yo(t). If Y(t) exceeds the threshold, the
presence of a '"target'" is declured;, otherwise, no target
declaration is made.

The probability that the IRST dovice makes a target

F declaration when a target i3 in fact in the sensors' field of

view is oalled the Probability of Detoention (PD). The rate
at which false target declarations occur is termed the '"Falge
Alarm Rate (FAR)."

One may correctly infer from the statistical nature of

the two principal IRST performance measures (FAR and PD) tha.t 4
the IRST detection problem is inherently statistical. !

The means by which the threshold Y,
lished will not be considered until Section VI. For the

in Fig. 1 is estab- x

purposes of the present discussion , while the possibility of

tiwe variation is retuined, the threshold yo(t) is assumed

to be detormintstic.(u) i

\a)Consistent with a convention of random process theory,
stochastic quantitles ure assigned capital letters, with
sample values designuted by the correasponding lower case 1
lotters, E.g., a samploe function of the random process Y(t)

iy designated y(t), }
4




Analysis ot threshold comparison receivers with
stochastic thresholds Yo(t) is also of interest, particularly
when Yo(t) is derived as a function of the photocurrent X(t).

The "adaptive threshold" radnr(l7’18)and sonar(lg)receivers
are of this variety. An IRST adaptive threshold processor

analysis is presented in Section VI,
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1I. OQUTLINE OF RESULTS

=
A. Objectives

The objective of the tollowing section is to outline a new

method for predicting the expected number of times that the
photocurreat from an infrared sensor will cross a time-varying
threshold, as the sensor scans a non-uniform scene. The method
is based on the development in Section III.B of an expression
tor the "threshold crossing rate" mJ(t) of the random current
Y(t) (¢cf. Fig. 1), The rate mJ is integrated to derive the
probable number of threshold crossings mJ(O,T) during a time
interval TO:

' m(0,T) =/ i (t)dt (1)

A

Q

where T  is the time interval [t] <« T/2.

The expected number of threshold crossings mJ(O.T) on the tine
interval To may be related tv the usual False Alarm

Rate (FAR) and Probability of Detection (PD) statistics typically

used to characterize the performance of IRST devices, as dis-

cussed in Appendix C.

An expression for the threshold crossing rate mJ(t) will be

presented in Section II.C., An approximate asymptotic formulation

tor m is presented in Section II1.B. The approximate expression

for m has sufficient accuracy in many cases and eliminates the

need to perform the integral of eq. (1). The asymptotic result
given here is derived in Section III1.D.

It is assumed that the average photocurrent mx(t) of the
current X(t) (of. Fig. 1) is a known funcrion of time.

6
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As discussed in Appendix A, mx(t) is a function of the
aperture irradiance, the Modulation Transfer Function, and
several other sensor parameters of the system to be

modeled (the '"model sensor').
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B. Asymptotic Formulation for m ;

The basic quantities needed to perform the calculation

for the expected number of threshold crossings m. are

J
a) The time-varying average value mx(t) of the random

current X(t) (cf. Fig. 1), and

b) The transfer function H(f) of the post-detector
filter in Fig. 1.

Equivalently, the Fourier transform of H(f) can be
specified in place of H(ZL):

h(t)=r{H(L)} (2)

The function h(t) is called the "impulse response! of the

post-detector filter, and F{ } denotes the Fourier transform

of the bracketed quantity.
As discussed in Appendix A, H(f) is presumed to include

the frequency characteristic of the photodetector. Thus,

the photodetector in Fig. 1 is '"idealized," 1in the sense
| that it is presumed to have a perfect all-pass electrical
frequency characteristic, the frequency-dependent part of
! the detector responsivity having been lumped together with H(f). »
As shown in Appendix A, the average value mx(t) of the 1

random current X(t) in Fig. 1 is derivable in terms of:

i a) high spatial resolution radiometric imagery of the

infrared scene, in the optical passband of interest

-SRI PIRE AN

b) the postulated modulation transfer function (MTF)
of the optical train of the model system '

¢) the quantum efficiency and physical dimensions of

the focal plane detectors, and

d) the focalplane scan velocity.
8
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The basic equation for obtaining mx(t) is eq (A-14).
The asymptotic expression for the expected number of

threshold crossings my can be expressed in terms of the

quantities m Ty My and 9, cach of which can be derived as

: y, %y’
; a function of mx(t)‘ The definitions ofm v, oy, and T
\ are as follows:
my(t) = E{Y(t)} (3a)
mz(t) g BE{Y(t)} = my (3b)
2 2
0, (t) = E{[Y(t) - my(t)] } (4)
2 : 2
0,°(t) = E{{Y(t) - m ()]} (5)

Thus,my is the mean value of the output ¥(t) of the post-

; detector filter (cf. Fig. 1), cyz is the variance of Y(t),
and cnz is the variance of Y.* The

expectation operators in eqs. (3)-(5) denote ensemble

averages over the photon fluctuation noise. It is assumed

throughout the analysis that photon noise is the dominant

noise mechanism; in this case, the detector is saild to be

i
{
operating in the "background limited performance" (BLIP)
regime.

*In the following analysis a dotted quantity denotes the
time derivative of the corresponding undotted quantity.

Also, E{:} denotes the expected value of the bracketed

quantity. 9




As shown in Appendix B, my cy, and 9, bear the

following functional relationships to mx(t):

my(t) = h(t) @mx(t) (8)

2 2
oy (t) = e h“(t) ® mx(t) (7)

. 2
0,2(t) = e [hce)] ®m (t) (8)

vhere h(t) is given by eq. (2), e is the electronic charge.

and ® denotes the process of convolution:

a(t) ® b(t) = J a(p) b(t -w)duw  (9)

The asymptotic formulation for m requires knowledge

of my, cy, and o, at a discrets set of times. In order to

illustrate the two types of time polnts that have special

significance, reference is made to Fig. 2. Fig. 2a is an

illustrative example showing the mean value mx(t) of the

random current X(t), as a function of time. The corresponding

my(t). as obtained from eq. (6), might appear as in Fig. 2b.

As shown in Fig. 2b, the threshold function yois taken as

a constant in order to simplify the discussion of this

section; generalization of

-~
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the present results to time-varying thresholds is performed

in succeeding sections.

With reference to Fig. 2b, times t1 and t2 are of
special significance in performing the calculation for
mJ(O,T).

At time t2 the mean current my crosses the threshold

Yo with a positive slope.

As shown in Section III.D., the crossing counter

my is incremented by unity at time tz. It may be seen

that the following equations are satisfied at time t2:

my(tz) =Y
(12)

my(tz) >0

When there are no solutions to eq. (12) during the
time interval of interest, the value of my is generally
dominated by contributions to the integral in eq. (1) that

occur near local maxima in my(t), such as the maximum at

time ty in Fig. 2b. The asymptotic expression for the incre-

ment in m ; associated with the local maximum of m,_ at ¢

1
can be written as:

mJ(tl,T) = mJ(tl) . 6t1 (13)

11




where &J(tl) is the threshold crossing rate at time tl, and
Gﬁ.is the effective time interval during which my(t) remains
at its closest proximity to the threshold Yo The time v in
eq (13) 1is relatively unimportant; the choice r>36t1 is
generally adequate to capture the principal contribution
to my that occurs in the neighborhood of tl‘

A reasonable approximation to &J(tl) valid when the
time fluctuations in mx(t) and my(t) are slow compared to &
characteristic fluctuation time for h(t) is given by:

1 [92(t1) }
% Tn |5,(%,)] exp [- e/l (14)

xﬁJ(tl)

where oy(tl) and oz(tl) are obtained from eqs (7) and (8),

evaluated at time tl, and
«t) = -_oy-('t??—" (15)

Eq. (14) 18 Rice's original equation for the mean threshold

crossing rate of a stationary Gaussian noise,

The effective proximity time th in eq (13) is given by

{2“ 2 (18) 4
st; = LWED 'ﬁ(tl)J i

where ?(tl) is the second derivative of wWt) with respect to

time, evaluated at t = tl.




C. The Exact Expression for n

J
Eq (13), while simple to evaluate, is not always an

accurate approximation for my. As borne out in the numerical
examples of Section V., eq. (13) becomes progressively less
accurate as:

a) the target/background contrast decreases, and

b) the width of the peakat tl (cf. Fig. 2a) decreases.
The implication of a) and b) is that eq (13) is unsuitable
for analyzing IRST performance in the regime where the

clutter discrimination problem is likely to be most serious.
The objective of this section is to present the complete
expression, eq. (17), for the mean crossing rate mJ

derived in Section III.C. The exact expression for th y

is not subject to limitations a) and b) above. In

addition, the derivation leading to eq. (17) is used to guide
the derivation in Section VI of a rigorous formulation

for adaptive threshold processors.

The exact expression for the mean crossing rate
derived in Section III.C., appropriate for non-stationary

Gaussian random processes, is
Sgu o &
gty ¥,) =\oy ) (1-r®) eCu) {o(p) + py ®(P)}  (17)

13
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where ay(t), cz(t), and u(t) are given by equationa (7},
(8), and (15), respectively. The functions ¢(.) and ¢(.)

are the Gaussian density function and its integral,

regpectively:

-4 2
¢p(x) = (2r) exp (-x"/2) (18)
X
o(x) '_£ ¢(z) dz ' (18)
The quantities p and Py in eq (17) are defined by:
i 'J- p ) y <0
p= [0,(1-r?) ]  {m, + rug, - ¥ u ($))= ] ° ° (20)
p]_ ’ yO >0

with my given by eq (6), and u(.) defined as the unit

gtep function:

0 x:0
u(x) = |1 x>0 (21)

Eq (17) is applicable even for time«varying thresholds yo(t),
as may be inferred by noting the presence of yo(t) in eq. (20).

The reason for including yo(t) and yo(t) As arguments

of mJ in eq. (17) is explained in Section II.E,

The only still-undefined quantity in eqs. (l7)land (20) is

r(t), defined now as:

r(t) = Cyz(t) / (cy cz) (22)

e b et v~

whero Cyz ig the cross covariance function of Y(t) and ?(t)

(cf. eqs (3)-(5)):

Cyp = BL[Y(E) = my ()] [¥(t) - m ()] ) (28)
14




As shown 1in Appendix B,
Cyz(t) = oy(t) cy(t) (24)
Thus, from eqs (22) and (24)

r(t) = (8,/0,) (25)

It may be noted that eq. (17) was derived subject to
the assumption that the photocurrent Y(t) (cf. Fig. 1) i=s
8 non-stationary Gaussian process. The justification for
this assumption and the constraints it imposes on the
validity of eq. 7l7) are discussed in Appendix F.

For the specinl case of uniform scenes and stationary

thresholds, it follows from eqs. (8) and (7) that

m, = dy = yo = 0 (28)
From eqs. (20), (26), and (286)

r=mp = Py = 0 (27)
From (17) and (27)

-8

hy(t) = (Oz/oy) (27) $(uy (28)

which is identical to eq. (1l4). Thus, eq. (17) reduces

correctly to Rice's original equation (14), appropriate

to the case of stationary Gaussian noise.

15




Eq. (17) appears almost identical to an equation

derived by Cramér and Leadbetter.(l4) The relationship

between eq. (17) and the corresponding equation in

Ref.[14] is discussed in Appendix D.

16
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D. The Character of the Results

The character of the results obtained with eq. (17)
is illustrated with the ald of Figs. 2-5. Once again, the
fact that the process Y(t) (cf. Fig. 1) has a time-varying
mean my(t) qualifies Y(t) generically as 4 'non-stationary"
process. Also, while the theory developed in this paper is
general enough to accomodate both time-varying and stochastic
threshold functiocns, the present example is simplified by
the assumption of alconstant threshold Yo (as deplcted in
Fig. 2b). ‘

Figures 3 and 4 depict, respectively, the crossing rate
mJ and expected number of threshold crossings m corresponding
to the mean current my(t) and constant threshold Yo of
Fig. 2b . The following general obuervatlions are made with
respect to figures 2-4,

1., As seen in Fig. 3, the function mJ(t) 1s appreciably

non-zerc over only a very small fraction of the total

time interval. The pulse-=like waveforms in Fig. 3

are much narrower than the corresponding peuwuks in Fig. 2.

2. 1f sgolutions exist to the equation

m(ty) = ¥, (29)
subject to the constraint that ¥

h(t)>0 , at t = tg (30)

than the character of my 1 determined almost entirely
by the be huvior of mJin the near-neighborhood of the

timeS'%.

*By convention, dotted quantities denote time derivatives a
of the corresponding undotted quantities, !

17
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For each solution of equation (29) that satisfies
constraint (30), i.e., for each positive slope
threshold crossing by the mean current my(t), the
expected number of crossings my is incremented by
unity. Time t2 in figures 2-4 is an example of

i this effect.

3. I my(t) lies below y, on the interval |t|<T/2,
i.e., 1f no solutions exist to eq. (29), then the
character of my is determined almost antirely by
the behavior of mJ in the near-neighborhood of the
local maxima of m_ . Time tl in Figures 2-4

y
illustrates this effect,

; 4. The precise foxrm of my(t) is typlcally unimportant.
Yor example, the my(t) of Flg. 5 might yileld eftectively

the same my as the my(t) of Fig. 2, subject only to the

constraints that the peak value and curvature of

m(t) at time tl and the values of tl’ tZ’ and Y, are

the same in figures 2 and 5.

A S S
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It is assumed throughout much of the analysis that the
comparator device in Fig. 1 recognizes only those
threshold crossings for which the following two

inequalities are obsarved:

yet) » Yo (t) (31)
and

y(t) » 0 (32)

This assumption on the nature of the comparator device
has been incorporated into the analysis in such a way
that the analytical expression for mJ is insensitive

to downerossings, such us that at time t3 in Fig. 2.

In fact, similar formulations for the crossing rate

may be developed subject to different assumptions than
(31) and (32), e.g., that the comparator device is sen-
gitive only to downcrossings, or both upcrossings and
downcrossings. In general, it might be desirable to
incorporate both upcrossing and downcrossing sensitive
detectors in a single IRST receiver, in order to develop
an estimator of object size.

It should be recognized that au hardware implementation
of the crossing detectors analyzed in this paper must
first estimate quantities y(t) and y(t) before tests
(31) and (32) can be performed.




E. Adaptive Threshold Processors

The results described thus far pertuain to calculations
of the crossing rate performance of processors configured as
in Fig. 1, having time-variable, deterministic, threshold
functions yo(t). However, as discussed in Section VI and
Appendix E, potential performance advantages accrue to the
use of threshold-establishing circuitry that adapts the value
of the threshold to the prevailing background conditions.
These "adaptive threshold'' processors, such as that shown in
Fig. 20, give rise to threshold functions that are not only
time~varying, but are also inhevently stochastic,

By choosing a suitably large value for the delay time

Ty in Fig. 20, the filtered current process Y(t) and the
threshold process Yo(t) are rendered statistically independent. 1

As shown in Section VI.B.,, it follows that: )

thy(t) = Eyoyo{mJ(tlyovo)} (205) 4

with mJ(t]yo,yo) given by eq. (17). The expectation operator i

in eq. (205) is defined by:

Yo¥o

. (o,n) (.} (207)

Ya¥o

hyoyof.} = [ [ dgdn £

where fy y is the joint density function of the threshold i
0’ o .
process Y6 and it's time derivative Yo' i

-
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Happily, the crossing rate expression for time-varying
deterministic thresholds, eq. (17), i1s found to be also
applicable tc the stochastic threshold-crossing rate, eqg. (205).

Eq. (205) is further developed in Section VI.C, and

the following approximate result is obtained:
c 2 ag.
( y?) ( y?)
mJ(t) = mJ(tl myo,mﬁo) [i + cy €y + cy 52] (228)

where c§ and cg are calculated from eqs. (7) and (8),

respectively. Expressions form_ , o , and ¢, , are obtained
Yo Yo Yo
by straightforward analogy to eqs. (6)-(8):

myo(t) = K h (t-T,) ® m_ (%) (189)
0% (£) = eK h® (t-T,) ® m_(t) (190)
YO o d X

02 (t) = eK [h (t-T )] 2® m_(t) (191)
yo o d X

The g2in constant K, time delay Td’ and impulse responsge ho(t),
in eqs. (189)-(191l) are design parameters of the adaptive
threshold scheme shown in Fig. 20. Expressions for the terms

€y and €qg in eq. (225) appear as eqs. (226) and (227) in

Section VI.C.
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As discussed in Section VI.D., the threshold variance
3 and c? in eq. (225) represent a '"False Alarm
o] o

Penalty'" that causes the false alarm performance of

factors ¢

adaptive threshold schemes to be inherently inferior to
fixed threshold schemes, against uniform background scenes.

It is also noted that:

il
:
4

a) The analysis of Section VI is applicable to a
considerable variety of adaptive threshold processors,

including the structures depicted in Figs. 22-24,

ik it b il

b) A list of important design parameter trade-off
issues 1is identified at the end of Section VI.,D. The
only important obstacle to performing these analyses
is the lack of high spatial resolution, radiometric,

infrared background imagery.

O
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III.

ANALYSIS

A. Introduction

The objective of section III.B. is to derive an
expression for the expected value of the number of times
a nonstationary nolse Y(t) crosses a nonstationary stochastic
threshold Yo(t). The main result of section III.B., eq. (42),
is not used in its complete generality until the adaptive
threshold processer analysis of Section VI, Eq. (42) .is
particularized at the end of Section III.B. to the case of
deterministic, time-varying thresholds 56(t).

The crossing rate equation that results, eq. (48),
requires knowledge of the joint density function fyy(y,y)
of the current ¥Y(t) and its time derivative %(t).

As discussed in Section III.C. the current Y(t) is a
non-stationary. Gaussian process. It follows that Y(t) and
&(t) are jointly Gaussian processes. The joint density
fyy can then be expressed in terms of five characteristic
statistics.

The explicit expression for the jointly Gaussian fyy
is then ured with the general crossing rate expression (48)
derived in Section IIT.B. to derive an explicit expression
for the crossing rate, eq, (70). The expressions for the
five important current statistics given in Section III.C. are

derived in Appendix B. The complete expression for the

23




expected number of crossings, eq. (72), generally requires

the numerical integration of a somewhat complicated

integrand. Section III.D. is devoted to deriving some

approximations to eq. (72) that don't require numerical

integration, and that have greater intuitive appeal.

. R o et .
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B. A Basic Equation for Curve Crossing Rates

The first objective of this section is to derive eq.

(39) for the average zero-crossing rate of a random process
G(t).

The process G(t) is not required to be either stationary
or Gaussian. Fig. 6 depicts a sample function g(t) of the
process G(t). It 1ls noted that g(t) has a zero-crossing at
time t

g(t,) = 0 (33)
It follows from (33) and the well-known properties of the
Dirac delta-~function, &(.), that

az t°+A
1=/ 4(g) dg=/ §[g(t)] |gCt)| dt (34)
-5 to-A

where &1 Eg and A are defined in Fig. 6.
It follows from (34) that the total number of zero crossings

of the sample function g(t) on the time interval |t] < T/2

is given by:
J =/ 8(g) |&(t)|dt (35)
To

In writing (35) it is assumed that g(t) does not have a zero-
crossing elither at t = : T/2. Defining mJ(O,T) as the

expected value of J on the time interval To:

i i A
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m;(0,T) = E{J} (38)

and operating on eq. (35) with the expectation operator

E{.}, one obtains

mJ(O.T) m [ dt E{8(g)|&(t)|} = J mJ(t)dt (37)
T T
o )
with the interval T defined by |t| < T/2.

From (37)

i (t) = E(8(g)|&|} = Jd§ /dg fge (8,8) (8(R)1&])  (38)

I i n B it T =

where fGG (g,8) i3 the Joint probability density function of
the process G and its time derivative G.
The first basic result of this section is the following

expression for the zero-crossing rate mJ:

hy(t) = J|&| f5s (0,8) d& (39)

Eq. (39) is wall-known; however, most references to
(39) appear to impose a stationarity requirement on G that
is not actually necessary. The applicability of (39) to
nonstationary processes appears to have first been recognized
by Cramér and Leadbetter§14)

The domain of integration in eq. (39) 1s & matter of
some interest. If one wishes to calculate only the expected
number of positive slope zero-crossings, 1l.e., the expected
number of times that both

G(t,) = O - (40)

and

G(to) > 0 (41)
26




are both satisfied on the interval {t| < T/A the lower and
upper limits of integration in (39) should be chosen as 0 and

«, respectively. The resulting expression for mJ(O,T):

mJ(O.T) = fdt {/ d§ Iteré(O.g)} (42)
TB o)

does not include zero-crossings of the type depicted in
Fig. 6, for which § < 0. Apparently, mJ is sensitive only
to the ''right type" of zero crossing, as defined by the
limits of integration in eq. (39).

The process G(t) is now assumed to be formed as the

difference of two stochastic processes Y(t) and Yo(t):

G(t) = Y(t) - Y (t) (43)
where Yo(t) is referred to as the "threshold process'.
Without making any assumptions with respect to the statistics
of Y(t) and Yo(t) (e.g., each process may be both non-~

stationary and non-Gaussian) it follows from (43) that:

255(0-8) = //dgdn fyyy vo(c.8 + n,om) (44)

27
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The proof of (44) is straight-forward (cf. ref. [21], p.131).
Eqs. (42) and (44) are the basis of the adaptive threshold
processer analysis of Section VI. For the present, it
suffices to specialize (44) to the case of non-random

thresholds, for which the fourth-order joint density t
YYYOYO
becomes

FIvat, (Ek + migin) = 2o ( 8+ N) S(ygE) 8(¥gmn) (44a)
From (44a) and (44)

£55€0,8) = fyy(yo.t *¥) (48)
From (39) and (48)

ty(t) = J1g] £ o (y,.8 + 95)d8 (48)
Changing variables:

2z =g + yo (47)
(46 )may be written as

my(t) = Sla-y,lto.(y,,2)d2 (48)
The‘mumtTQrmh , breviously interpreted as the zero-crossing

rate of the process G (ct. egq. (39)), 1s now Ilnterpreted as

the threshold crossing rate of the process Y(t).

28
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The domain of integration of eq. (48) is defined by
assuming that the hardware implementation of the threshold
counter is sensitive only to those crossings for which the

following two inequalities are satisfied simultaneouslv:

y(t) > Yo(t) (48)
and

¥(t) > 0 (80)

For the example of Fig. 7 this particular type of detector

would increment its '"crossing counter" at time t but, by

1 »
design, would fail to indicate threshold crossings at times

t2, ta, and t4.
It follows from eqs. (48) - (50) that

ho(t) = I(w) ~ H(Y,) T(¥,) (51)
Where u(.) is given by eq. (21), and

I(x) &

[o IR

(2-y5) £,4(y,,2)dz - (52)

The crossing rate mJ could Jjust as well have been
formulated subject to different constraints than (49) and
(50). For example, the hardware implementation of the

threshold counter may be sensitive to all crossings for which

y(t) >0

regardless of the relative magnitudes of y(t) and yo(t).
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In this case 9q. (48) is still subject to the constraint
of eq. (50), but the constraint of eq. (49) is no longer
in force., It may then be shown that the following

expression obtains, instead of eq. (B61):
mJ(t) = (=) = 2u(y,) 1(¥,) (53)

with I(.) given by (52).

When yo < 0, satisfaction of (B50) assures satisfaction
of (49). One then expects @J and mJ to be equal. Inspec=
tion of eqs. (51) and (53) shows that this is indeed the case:

th(t) - th(t) = T(w) ' y°<t) <0

However, when yo > 0 condition (48) 14 more restrictive
than (60). One then expects @J to be greater than mJ.
From (31) and (53):

hp(t) = hp(t) = (90, 9,(t) >0

Since z(yo) is inherently negative (cf. (B2)), it follows

that mJ > mJ, as expected, when yo > 0.

With respect to Fig, 7, it can be shown that the integral
mJ of eq. (63) is incremented by unity both at time tl
and tz. By comparison, "h is incremonted by unity only at

time t

1; mJ does not ''count'" the crossing time t for

2'
which condition (49) 1is violated. Neither my NOTr iy reglsters
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a crossing at times t3 and t4 in Fig. 7, since condition
(50) is violated at times t3 and t4.
Plots of m(t) and m(t) corresponding to Fig. 7 are
depicted in Figs. 8a and 8b, respectively.
The analysis that follows in Sections III - V is
based on development of eq. (H51) rather than eq. (33),
1.e., it i3 asgsumed that the signal processer hardware

being modelled requires the satisfaction of both (49) and
(50) before it will register a threshold crossing.
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c. NON-STATIONARY GAUSSIAN PROCESSES

Further development of eq. (48) for the crossing

rate mJ is contingent on obtaining a suitable expression
for the Jjoint density fyy' The objectives of this sectdion
are:

1) to evaluate eq. (48) for the particular case of

a bivariate Gaussian density, eq. (&B),
2)

and
to introduce the expressions derived in Appendix B
for the five basic statistics that appear as

parameters in eq. (858).

The Jjustification for assuming a CGaussian distribution

tor fy (and hence for ty and fyy as well) 1s given in

Appendix F,

The approximation:
-I
F (y) = ¢ (yo )
y y

has been considered by Gilbert and Pollack,(zz)where v(C.)

1s the Gaussian distribution function,

eq. (85), my and
oy are defined by equ. (56) and (58), and Fy(y) ls the i
; digtribution function of the process Y(t):

|
Fy(y) _i fy(y Ydy %




A summary of Gilbert and Pollacks' results is given in
Ref, (15).

The problem addressed in Appendix F is different,
and much simpler, than the problem of Ref. (22). It is
shown in Appendix F that the relative error in mJ is
approximately equal to the relative error ¢ in the density

function of Y(t):
y-m
Y -1 <___1)
fy(y) oy ¢ 9y (1 + €)

where ¢(.) 1ls the Gaussian density funetion, eq. (84).
The Edgeworth series expansion(13>of fy(y) provides a
simple and easily evaluated expression for the relative
error £, Sample calculations described in Appendix F
show that £ 1is negligibly small for typical system and
background parameter values.

Bagsed on the analysis of Appendix F, the Jjoint density
f . 1s now assumed to have the following bivariate normal

yy
form:
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'O-V2

- 27UV

£ - {2 1-r2)}  exp { [u g
yy(yo'z) noycz( r) xp {~ 2(1-x2)

E{Y}

E{Y}

m

2
E{(Y-my) }

: B{(¥-m)?)

vz E{(Y-my)(?-mz)} =

11

(yo-my) /oy

Y

(z-m,)/0,
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(55)

(86)

(87)

(58)

(59)

(80)

(61)

(62)

i saltellidt. -

ol = . . .




It may be shown from eqs (52) and (55) that

g

Tz 3
I(x) -(ay) (1-r%) o (u) Bb(py) = $(p 0] +py[0(pY-0(p, )]}

where cy, oz,

and (61), respectively. The functions ¢¢.,) and ¢(.) in

r, and u, are given by eqs (58), (59), (60),
(63) are defined as follows:

(2m)"¥ exp (-x%/2)

$(x)

O(X)

n

X
—é $(z)dz

The quantities p., p,, and p, in (63) are defined as:
o 1! X

3
[kl—rz) oéj-l (m, + ruc,)

Py =
2. 8 -1
p, ® E(l-r ) ozj (m, + rug, -y )
3
- 2 -1
Py = L(1-r% Uéj (m, + ruo_-x)

From eq. (68Y, (64), and (65)

1im ¢(p,) =lim ®(p,) = 0
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From eqs. (51), (63), and (69):

T I e )

J
z ]
ho(t) = (6;)(1—r2) o(u) {¢(p) + pyo(p)} (70)

where by definition

(71)

C
< <%
(<]

I
o O

[«

Py

with Py and Py given by eqs. (66) and (87).

The expected number of threshold crossings on the time

interval T,, defined by |t] < T/2, is given by:

~Locadia . -

m;(0OT) = E {(J} » J hy(t)ds
TO

(72)

with mJ(t) glven by eq. (70). In order to complete the formal

calculational procedure for my, it 1s necessary to specify

values for the five functions my(t), mz(t), oy(t). uz(t),

and r(t', defined by eqs. (56) - (60). It is shown in

Appendix B that for background-limited (BLIP) detection,

my(t) = h(t) ® m (t) (73)
oi(t) « o h%(t) ® m () (74)
2 2

oL(t) = e (neey]e » m (t) (75)

mz(t) ™ my(t) (731)

r(t) = Oy(t)/ohét) 2 (76)
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EF

whore e is the electronic charge, h(t) is the impulse
response of the post-detector rilter (ef Fig. 1), mx(t)
is the moan value of the curront X(t) (etf. Fig. 1), and
% {s the convolution operator:

w

E(t) ® g(t) =_{ f(t=-x)g(x)dx (77

1 The relationship ot m‘(t) to the radiance of the
scane under observation and the optical parameters ot

the IRST sensor ls discussed in Appendix A, and oxpressed

quantitatively by vg. (A=14). Egs. (A-14), (70), and
(72)-(76), tuken together, represent u prosceription for
calculating the performance of a time-variable threshold
[RST sehsor against o non-uniform scoenae,

In principal, it remains only to model, measure, orv
otherwise specify the radiance distributions ot typical
targuts and background scenes. This aspect of the IRST
modeling problem is not considered in this paper.

It muy be noted that cq. (70) appears almost itdenticenl
to an equation in Retf. (14). The relationship betweon
oq. (70) and the corresponding oquation in Ret, (14) is

discussaed in Appendix D,

37
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D. Asymptotic Approximations

1, Introduction

Evaluation of eq. (72) for the mean number of threshold
crossings my generally requires a numerical integration of
mJ. as given by eq. (70). It is now shown that a relatively
simple approximation for my can be developed that eliminates
the need to perform this numerical integration, and has
greater intuitive appeal than the original formulation.

Some numerical examples comparing the numerical integral of
eq. (70) with the approximate result developed here are
presented in part V of this paper. Eq. (72), with eq. (70)

substituted for mJ, is now written as;

mJ(O.T) - u(t)e'b(t)dt (78)
T
)
where T  is the time interval |t] <T/2, and whero

b(t) £ ud(t)/2 (79)

Sz) 2 b n
a(t) Oy (1-r™) {¢(p) + Py d(p)} (2m) (80)

Experience with the numerical evaluation of eq. (78)
has led to the conclusion that mJ is appreciably non-zero
only over very brief intervals of time (cf., for exumple,
Fig. 3). 3ince the principal contribution to the lntegral
my of mJ necrues over those same short intervals (ef., Fig, b)),

eq. (78) may be written as:
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mJ(O.'I‘) o ﬁmJ Ctonty) (81)

where

el

myCe 1) = 7 oa(t)e (gt (82)
n’'n T
n
where T is the time interval It—tnl < T, /2.
The interval Tn is presumed to be large enough for the
integral in eq. (82) to capture the principal contribution
th

to mJ(O,T) made by the h torm in the summation of eq. (81).

Experience with the numericul evaluation of eq. (78)

hug aulso shown thut the rapid time variation of th, in the

J
neighborhood of the discrete times tn is mainly due to the

exponential factor, the function a(t) varyipg much more slowly

with time. Eq. (82) 1is thus approximated uam:

myCt ) = a T (83)
!
where a, = u(tn). and j
1=/ e Pty (84) s
n,r {
n '
where T  is the time interval |t-tn| < 1, /2 ]
1

The usual first-order saddle pointmethod is now used

to obtailn approximations for In‘ The saddle points tn are

found by solving for the roots of the equation:




b(tn) - u(tn)&(tn) = 0 (85)

£Eq. (85) has two distinctly different types of solutions,

corresponding to solutions of the following two equations:
ﬁ(tn) = 0 (88)

u(tn) -0 (87)

Each root of eq. (85) gives rise to a discrete contribu-
tion to the approximate formulation for My, the form of which
depends on whether the root is a solution to eq. (86) or
eq. (87).

Solutions of eq. (86), such a8 time tl in Fig. 2b,
will be referred to as '"saddle points." Solutions of
aq. (87), such as time tz in Fig. 2b, will be referred to
as "mean crossing times."

The next objective is the development of approximations
to the integral In of eq. (84).

2. Saddle Points

The function u(t) in eq. (79) is now given ua

Taylor expansion about a time tn:

o
acey ¥ Up t =t v (et )7/2 (88)

Assuming that tn is a "saddle podint', 1.e., a solution of

eq. (86), eq. (88) becomes:

F (-t )72 (89)

U
u(t) = u n

n
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From egs. (79) and (89), dropping the fourth-order term:
N9 . 2
b(t) = u /2 + u, b (et )%/2 (90)

From eqs. (84), (90), and (79):
e /2
n, n . 2
In = agxp(~b ) [ exp(-u_ u_ t7/2)dt (921)
n° e /2 n A
n

where bn b(tn).

Making use of the fact that
L exp (-mx%)dx = 1 (92)

and assuming that €  in (91) is chosen sufficicntly large,

n
eq. (91) can be approximated as

I ¥ 2w i) exp (-by) (93)
From (83) and (93)
myCt,,T,) - [an exp (—bn)] (21r/uniin)if (94)
Comparison of eqs. (78) and (72) shows kthat
h(t) = a(t) exp [-b(t)] (95)
With the definition:

- | .
Sty = (2m/uy H) (96)

41

e e e i et K o nt M



e ——— T

It follows from (94)-(96) that:

mJ(tn,rn) LY mJ(tn) 8ty (97)

From eqs. (81) and (97)
om =~ Ia (t.) st 08
mJ( T2 n J( n) n (98)
It is8 relatively straightforward to show that:

- - 2,4
W(t) = d/dt {(yo-my)/oy} -az(l—r ) pl/cy (99)

Thus, from (86) and (99)
Py(ty) = 0 (100) ;
From (80) and (100)

8y @ (0,790 (1-rD)} o(p) (27 (101)

From (100), (86), (67), and (71)

Pp ™ ’Po - [(1-1-2)* cz]'l o ¥ <0 (102)
By = O $y > 0 ‘
| at t = L ‘
From (95), (l0l1), and (79) 1
w(t) = (2m)F (oo e(ut ([2n(1-r2)) ¥ ocp )} (103)
J'n z' 'y n n '
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The desired approximation to m ; is given by eq.

(98), with th and mJ(tn) given by eqs. (98) and
(103) ,respectively,

The first bracketed quantity on the left-hand-side
of eq. (103) is identical to Rice's equation for the
threshold crossing rate of stationary Gaussian noise. The

; second bracketed quantity in eq. (103) is always less than

: unitf. For conastant threshold processors (90 = 0) the j
| second bracketed quantity is equal to (l-rz)*, which is
nearly unity whunever the fluctuations in the mean current
mx(t) are slow compared to the impulse response h(t) of

\ the post-detector filter,

For constant threshold processors, the gquuntity th in
eqs. (96) and (98) can be interpreted am the effective time
interval during which the filtered meuan current my(t) remains
in the neighborhood of its peak.

It should be noted that the approximation (98) may
be incomplete, since the discrete terms in the summation

all correspond to roots of eq. (86). As discussed in the

following section, roots of eq. (87) assuming such roots

exisgt, each make an additionunl discreoete contribution to mJ.

3. Mean-Crossing Times

Instead 61 eq. (86), it is now assumed that eq. (85) is

satisfied because

u(ep) = Ll e = m(e ) /o () =0 (104)
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The saddle points obtained as solutions of eq. (104) correspond

to times when the mean current my(t) crogses the threshold

yo(t). Thus, 1in the vicinity of ¢t

I

[yo(t) - my(c)] < [%“n) - my(tn)] (t-t,) (108) {
From egs. (108) and (79)

bty & [Yoltn) = t(t,0]2 (et %7203t ) (108)

Evaluating eq. (84) for In, with b(t)now given by (108) rather
than (80), it can be shown that

D Z
Myl Ty) 3 (L-rH? @(pn>l§‘T0- ; t + 9(py) sgn (B -y) (107)

Whero sgn(.) denotes the sign of the bracketed quantity,

| | denotes the absolute value of the enclosed quantity, and |

zﬁur) y ¥, <0 (108)

(1r) <m~y) » ¥o >0

The agsumption is now made that:

lp | >> 1 (109)




Subject to assumption (109), it follows from eq. (108)

: that
\ and W) v
_ v
*Pa) = ju(mz-yo> yz > (111)

where ¥(.) denotes the unit step function

0 , X <0
UWx) = )1 , X >0 (112)
Bq. (111) can also be written as
Y]
(b)) & HChy) HChy = ¥ (113)
Noting that
u(rhy - ¥,) sen (rhy -y, E u(rhy =95 (114)

it follows from eqs. (107), (110), (113), and (114), that

my(t 1) ¥ [my<tn)] u[my(tn) - yo(tn)] (115)

subject to assumption (1089), with P, given by (108).

It follows from eq. (115) that if the mean current
my(t) crosses the threshold yo(t) at time tn’ then the
crossing count my will be incremented by unity if the

following two conditions are both satisfied:
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1) the <lope of my(t) at time tn (i.e., m(tn)) must

be positive, uand

2) the slope of my(t) must be greater than that of

yo(t) at time tn

--assuming that the slopes of my(t) and y°(t) at
time tn aren't nearly the same, i.e., that my(t) and yo(t)
don't run nearly parallel in the neighborhood of their
crossing point th' {This last assumption is expressed
quantitatively by inequality (108).)

Thus, the asymptotic result for mean-crossing times
reflects the limitations on the domain of integration in

eq. (48) imposed by inequalities (49) and (50).




1v,

INFINITE CONTRAST POINT TARGETS

A. Introduction

The mean crossing rate formalism developed in
Section III.C requires adherence to the following pre-
scription: .

1. The mean current mx(t) must be specified. (It

1s shown in Appendix A how mx(t) may be calculated

in terms of the radiance distribution of the scene.)

2. The post-detector filter impulse response h(t)

must be specified.

3. Eq®. (73)-(76) must be evaluated for the five

tunctions m (), 0,%(t), 0, %(t), m(t), and r(t).

4. The mean crossing rate mJ(t) is ohtained from

eq. (70), and integrated over time to obtain the

expected number of crossings.

The difficult calculational problem generally posed
by step 3 above can be circumvented by making the following

choice for mx(t):
mx(t) -;xo G(t—to) (118)
Eq. (116) 1is the limiting case of an infinite contrast

point target, assuming an ideal optical MTF, and point

detectors in the focal plane.
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H
f The final resu.t of this section will be an expression
! for mJ(O,T) that is formally identical to the usual expres-

; sion “>r the probability of detection Pb(16):

Yo

- my(tp)i
(117)

cy(tp)

A Pp=1-2¢
g where ¢(.) is the Gaussian distribution function, and

tp is the time sr which the post-detector filter output

current assumes its peak value.

'The application of eq. (117 to PD calculations was
16)
previously deriveé subject to the assumption of internal

amplifier-noise-limited operation, for which the filtered

Rt RPN

current Y(t) is a stationary random process. The surprising

result is now obtained that eq. (117) 1is also applicable to

PD calculations for BLIrF sensors, for which the current Y(t)

i i

is a nonstutionary r.indom process. The only important dis-

tinction betwenn the calculational procedures for PD for

amplifier-noise-limited or background-limited operations lies
in the means for obtaining oy(tp). For BLIP sensors, cy(tp)

is calculated from eq. (1486).

—— . e e a - . .. _
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B. Analysis
Eqs. (116) and (73)-(76)lead immediately to the following

equations for the five basic current statistics:

| my(t) = X B(t=t)) (118)
;_" 0, 2() = x, e h¥(t-t) (119)
' 0, 2(8) = x e [n(e-t ) ? | (120)

ho(£) = xg B(B-t) (121)
‘ r(:) cy(t) cz(t) = X, e h(t-to) h(t—to) (122)
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From eqs. (119) and (120):
1

- & - y & ")
; uy(t) (xoo) ]h(t-to)l (xoe) h(t—to) Sgn [ﬁ(t—g)ﬂ (123)

.
3
1

5,08) = (xgo)t nce-t )] = (oot Bty s [(e-t)]  (124)

where the function ggn (.) denotes the sign of its argument.

Prom sqs. (122)-(124):
' r(t) = sgn &(t-to) h(t-toﬂ (125)
Thus, from (128):
fr(e)] = 1 (126)
invalidates

Unity correlation covetficlent, oq. (126),

the bivariate density eq. (865). (Note the factor (l-ra)& in

aq. (55).) Thus, u new expression for fyz must be found that
(B2).

is valid for the cuse r = 1, und used to evalunte eq.

(126) implies the following

It may be shown that eq.
3 2(t) and Y(t):

relationship between Y(t)
Z(tYy = a{t) Y{(1) (127)

where
a(t) = {h(t-to)/h(t-to)} (128)




It follows, in turn, that:

teu(y,z) = £y (y) (2 -~ ay)

Where §(.) is the Dirac delta function, a 1is given by
(128), and

ty(y) = oy"l $(u)

with

o(x) = (2m ™Y exp (~x%/2)
and

u(t)

i34

[yo(t) - my(tﬂ /ay(t)

From eqs. (582) and (129):
I(x) =~ (ay, - ¥,) £,(y,) lu(ay )-u(ay -x)}

with the unit step function u(.) defined by eq. (112).

Assuming a constant threshold processor,
Yo 0
it follows from egs. (5%) and (133) that

my (t) = I(=) = ay £y (v,) u(ayy)
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(130,

(131)

(132)

(133)

(134)

(135)




From eqs. (72), (135), and (130)-(132),
T/2 _
my(0,T) = £ dt ay  u(ay,) Oy
o]
With the following change of variable

q = @o—xoh(t-toi] [(xoer® a(t-t, )| (137)

1 ¢(u) (136)

eq. (136) may be written as

2(1/2) .
T u[BC-todvo/nce-t)] sen [nce-t)] o(adda  (138)

It is now assumed that the threshold is positive

Vo > 0 (139)

and that h(t) has the form shown in Fig. 9.. Eq. (138) then

may be written as:

a(t,)
my(0,T) = = / ¢(a)dq (140)
a(t,)
From eq. (137)
Yo %o h(O)‘
a(t,) = 1lim ;(xoe)i h(0) (141)

n(o)+ot
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Also, from eq. (137) and Fig. 9:

. y -x_ h y,-m

: _iL_Jifwmﬁﬁ_ Ymux

q(t ) ™ (x e ) i - d, (142)
1 Y VR Ymux

From (140)=(142)

m;(0.T) = / ¢(a)dq (143)
a(t,)

Defining the Guussian distribution function ¢(.) ag

in eq. (65), eq. (143) may be written as:
mJ(O,T) -1 - ®{q(tl)} (1ld4)

with q(tl) given by eq. (142). Eq. (144) is the desired result.
Eq. (144) muy be generalized somewhat, by allowing h(t)

to have the form shown in Fig.10.  With the following

definitions:
3 mymux(J) - X, hmux(J) Jo= 1,28, .. (148)
Tymax (90 = ()T b .12, (146)
yo‘mymux(J)
a(ty) = T T3 Jo=1.2,3,... (147)
It follows thuat
1 my(0.1) = & (1 - efacep]) (148)

According to (148), m, has a discrete contribution frem each

J

of the peaks in h(t).
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SAMPLE CALCULATIONS

A. A Model Filter and Model Background

In order to calculate the threshold crossing rate mJ, it
is generally necessary to first numerically evaluate
eqs. (73)-(78) for the functions m (t), o %(t), 0,2(t),
mz(t)' and r(t), since analytical evaluation of eqs. (73) =
(76) 1s generally not possible.

In order to obviate the need for numerical evaluation
of (73) - (76), it is assumed in this section that the
impulse response h(t) and mean current mx(t) have the

following forms:
h(t) = (2/t,) exp (-n(t/t )} cos 2nf ¢ (149)
2
mx(t) - X, {1 + Xy exp Em{t/r) ]} (150)

Eq. (149) is a two-parameter family of functions, with
parameters to and fo. Eq. (150) 1 a three-parameter family,
with parameters Xor Xq and tv. Eqs. (149) and (150) are
particularly convenient, as they allow analytical evaluation
of eqs. (73) - (76), and have a large enough number of
parameters to illustrate many of the effects that one would
expect to observe with more general h(t) and mx(t).

Taking the Fourier transform of eq. (149) results in the

following expression for the transfer function H({f):
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H(f) = F{h(t)} = {exp [—n(f—fo)ztoz] + exp [-n(f+fo)"cgJ} (151)

Representative plots of eqs. (150) and (151) are given in
Figs. (11) and (12).

It is seen from Fig. 11 that the parameters Xor Xq1» and
T of mx(t) correspond respectively to a constant background
brightness level, the object/background peak contrast, and
the size of the non-uniformity., It follows from Fig.12
that the model filter has a bundpass chuaracteristic centered
at the frequency fo. From eq. (149), the parameter to is
a damping constant for the filter. Thus, while not completely
general, eqs. (149) and (150) permit the exploration of a
considerable variety of possible background/filter
interaction effects.

Assuming that

2 2
exp (-4nf0 ts ) >» 1 (152)

it follows from eq. (151) that

mix H(f) = 1 (183)
f

The factor (Z/to) on the right-hand-side of eq. (149) was
chosen to normalize H(f) to a peak value of unity.

The only major deficiency in eq. (151) ns a model filter
characteristic is the inability to control the filters'
low frequency roll-~off independently of the center-frequency
parameter fo and noise bandwidth parameter to‘

The derivations of the analytical expressions that result
55




from evaluating eqs. (73)-(76) with the assumed tfunctional
forms for h(t) and mx(t) are avallable from the author.
Figs. 13-17 are illustrative evaluations of my(t),
2 2
mz(t), cy(t), Cyz(t). and cz(t), assuming the following

choices for the five model background/filter parameters:

x, = 134. namps

- 0.5

T m 159. usec,

f = 6,91 kH=z
t. = 225 usec.

The rationale behind the cholce of parameter values (154) -

{(158) 1is discussed in Appendix G.
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B. Crossing Count Calculations

In this section the value obtained for mJ(O.T) by
integrating eq. (70) numerically will be compared with
the value obtained for mJ(O.T) by three approximate methods.

In every case, it will be asgumed that h(t) and mx(t) have

the forms specified by egqs. (149) and (150), and that the

threshold Yo is independent of time.

The first approximation to mJ(O.T) is given by:

(159)
T, ¢

where

hes(8) = (@n)% (o 000) d(u) (160)

and T  is the interval lt] < T/2.
Comparing eq. (160) and eq. (1l4), it i1s secen that eq. (159)
is simply the integral of Rice's original expression for the

crossing rates of stationary processes, transmuted into a

function of time through the use of time-variable expres-

sions for the basic current statistics,

my, oy and O
It is generally found that the estimate

sz *my (161)
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improves monotonically as the parameter t in eq. (150) is

made larger. Eq. (159) defines what will be referred to as

the "quasi-~stationary" (Q-S) approximation to the mean
crossing count my.

The second approximation to mJ(O.T) that will be

evaluated in this section is the asymptotic approximation
derived in Section III.D:

mA(O,T) S mJ(ts)Gts (162)
The saddle point ts is obtained from egs. (100) and (67) as
the solution of

m,(ty) + r(ty u(ty) a,(ty) = 0 (163)

since it is assumed that yo(t) = 0 in this section in order

to simplify the numerical examples., It has been found that

(163) is effectively equivalent to

mz(ts) = 0 (164)

due to the very small value of r(ts) for the examples that

have been worked. It follows from eq. (164) and inspection

of Fig.1l4 that ts = 0 for the example of eqs. (154) -

(158). The same saddle point condition has also been found

to hold for the other numerical cases discussed in this section:

\ mm mlaam



tS = 0 (163)

corresponding to the time of closest approach of my(t) to

Yo for the assumed expressions (149) and (150) for h(t) and
mx(t). It follows from the above discussion and the analysis
‘ of sectionlIII.D that the appropriate asymptotic approximation l

to mJ(O.T) is given by

mA(O'T> - mQS(O) 6ts (166)

where mQS is given by eq. (160), and Gts is gilven by
! eq. (986):

§t, = (27/%(0) u(o)}* (167)
where §
Yo = m(0) i
. u(0) = cy20§ (168) }
‘
] and ;
- 2 D
a) = d%u(t)/de” (169)
t=0

e T i B e st

The third and final approximation t¢ m;(0,T) is effectively

"
a modified version ofGenoud's method(‘4)for the calculation

PRI S

of probabllity of detection:

mpg(0,T) = 1 ~ 0{u(0)} (170) E
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where ¢(.) 1s the Gaussian distribution function, as given
by eq. (65),
As will presently be shown, eq. (170) becomes

increasingly accurate as an approximation to my:

mpS(O.T) o mJ(O,T) (171)

as the object contrast Xy is made progressively larger
and the object extent t is made progressively smaller.
This is not at all surprising, in light of the fact that
the mean threshold count for infinite contrast point
targets, eq. (144), 1s identical to eq. (170). The
quantity Mpg will be oalled the "goint source approximation"
to mJ.

Fig.18 1is a plot of the base ten logarithms of
mJ(O.TF). mpS(O,TF), and mA(O,TF), as a function of the

normalized peak threshold level up:

Uy g u(L) (172)

where u(0) is given by eq. (168), and gpusuming the

background radiance and filter parameter: of eqs. (154)-
(158).
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As discussed in Appendix G, parameters (1984)-(158)

correspond to the following more basic parameter cholces:

; W, 1 mrad (object angulur subtonse)
i dT = 1 mruad (instantaneous tield-otf-view)
. Ty = 1 sec (frame time) (173)
! HO) = 10‘J (transfer function zero ordinute)
i
i n = (0.6 {quantum etficiency)
¢ _ (174)
] \ = .},0um (optical wavelength)
. 2
A Aap = 500 ¢m (aperture ureu)
?' \
! and f
; . :
{' Ly = 0.14 mw em™2 sr] (background radiance) (175) {
Specifying ¥ =& qualifies the object described by i
eq. (150) as "target-like" in character (cf. Appendix Q).
It is seen from Fig. 18 that the point source approxi-
mation myo provides an excellent fit to the crossing count |
function g, for the target-like object described by !
i

eqs. (154)-¢158). However, the asymptotic approximation i

my underestimates m by nhearly an order of magnitude for
ul

the target-like uvbject.
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It 1s now assumed that the object is clutter-like,

rather than target-like:

”n a 5 “T = 5 mrad.

instead of the previously assumed values Ay =X 1 mrad.

It follows that
T = 798 psec.

replaces eq. (156). The other background and filter
parameter values, oyus. (154), (158), (157), and (158) are
left unchanged. I'ig. 19 is a plot of the base ten
logarithms of the corresponding values of mJ(O,TF),
mpS(O,TF), and mA(O'TF) for the clutter-like object,

It i3 seen from Fig. 20 that the asymptotic approxi-
mation m, is effectively equnl to my, providing a much
better approximation than Mpg for the clutter-like object,

It has generally been found ftor a fairly wide range of
background and filter paraumeters that

a) Mpg provides an excuilent upproximation to mJ,
and is superior to my, when the time scale of fluctua-
tion of mx(t) is comparable to that of h(t).

b) my provides an excellent approximation to m and

J ’
is superior to Mpg when the time scuale of fluctuation

of mt(t) is slower than that of h(t).




Finally, t6 ts notod that tho quasi=stuatic approxi-

‘, mut{on qu wsun lly provides nt loast as good an
: 1Y

approximution to Mmoo oithor Mpg or . For oxraploe,
plots of mQS ara vivtual ly colneildent with myoon both
ol Figs, 18 and LY. Howover, ovaluation of mQS rogqui ros
tho numoerical intogration of wq. (169). By contrast, the

e lewlations for My and m, don't roquire numorioeal
u

: intogration, and thus roquire tar leds computation time

3 LY \ . 1 * .
than ealaulations fox me"
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VI.

Adaptive Threshold Processors

A. Introduction

The basic IRST processor under consideration up
to this point is desoribed in Section 1.B, and depictoed
in Fig. 1. It has been shown in Section V that the
threshold crossing performance of the receiveor in Mg,
1 is strongly dependent on the threshold tunction
yo(t). Thus, it is highly desirable that the IRST
processor suppress clutter-induced threshold
crossings by increasing yo(t) when mx(t) is "elutter-
like".

Rather than allow yo(t) to takoe dn an o priovi
constant or functional value, it is necessary to
establish the threshold by some means that "adapts"
yu(t) to the prevailing background conditions.

“A similar type of signal processing problem has

been addressed in the radnr(l7'L8) (19)

and sonar

literatures. A candidate adaptive threshold scheme
(25) .

adapted from the earlier work s depicted in

Fig. 20.

(YA
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The block with transfer function exp(—jZﬁde)
introduces a delay of Td seconds. The triangular-shaped
block in Fig. 20 denotes an ideal all-pass amplifier of
galn K. It is seen that the delay time Td’ gain K, and
transfer functions Ho(f) and H(f) are all design variables.
Strategies for choosing the design varlables in order to
satisfy particuiar performance requirements or optimization
criteria will not be discussed. The remainder of this
section is devoted to developing a formulation for the
expected number of threshold crossings for IRST receilvers
structured as in Fig. 20 under the assumption that the
design variables have all been specified.

Eq. (225) for the crossing rate mJ ls the principal
result of this section.

B. Analysis

The starting point for the adaptive threshold analysis
is eq. (39):

hy(t) = []&] £54(0.6)dg (176)
where, from eq. (43):

£54(0,8) = f/dzdn £ (Z,g+n, z,n) (177)

y¥v Y,




: Assuming that the processes, y,y, ¥y

|
:
El
5

o and yo. are jointly

Gaussian (cf. Appendix F for justification), their

Joint denéity can be expressed in terms«of their covariance

matrix(ZI) A .
~

The matrix A has four rows and four
columns, for a total of sixteen elements. Written in

partitioned form:

c | ¢
A = [~:—- S __] (178)
G 1 So

where the superscript T in (178) denotes the matrix
transpose operation. The sub-matrices g, Qo' and 21 in

eq. (178) are defined as follows:

2
o (%) ng(t,t):

€= (Coplt ) T y(%) (178)

() AL

2 1

Co Cyy, (B8 oy (8 ‘ (180)

Cy y(t,t) Cy y(t,t) f
S (G (60 Cy 9ltst) (181)

O

The scalar covariances that comprise the elements of

(179)~-(181) are defined by

e em o Amme . oam W% lar

Cppltyrty) = E{[A(tl)-nh(tl)] [B(tz)-mﬁ(tz)_'l b (182)

where A and B take on the values Y, ¥, Yo' and ?0. us

appropriate. Also,
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mA(t) = E(A(t)} (183)

and

[§8)

P
TAT(E) F Oyt t) (184)

It follows from (182) that ny(t,t) - ny(t,t) and
Cyoh)(t.t) - Cyoxa(t’t). Thus, the matrices g and1g° are
symmetric,

The elements of C are obtained directly from

eqs. (B=17), (B-20), and (B-23):

%z(t) = elm (t) ® hz(t)} (183)
2 2

3% (1) = eln (t) @ [n(tﬂ ) (186)

ny(t,t) -\wy(t) ay(t) (187)

Expressions for the elements of (180) many be obtained
as direct adaptations of (185)~(187). It follows from

Y, (t) = K{ho(t~Td) ® X)) (188)

where ho(t) is the Fourier inverse of Ho(f). Toking the

expected value of both sides of (188):

= - 9
myo(t) K{ho(t Td) ) mx(t)} (189)
analagous to eq. (B-30). It may also be shown, analagous

to (185)-(187) that:
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byoz(t) = eK{m (t) ® h2(t-Ty4))

(190)
2 2
6y (£) = eKimy(c) @ [ ce-m)] & (191)
- 6
G g, (828 =0y (6) Gy (©) (192)

It remains only to formulate similar expressions for the
elements of gl in order to complete the specification of
the joint density £ .
v Is
The analysis this requires is so similar to Appendix B
that it will only be outlined here.

It may be shown that:

Cyoy(tl,tz) = eK_ [ du m, (u)h (t;-T -1) hity-u) (193)

]
Also,

Cyoy(tl.tz) = atl{Cyoy(tl.tz)} (194) {
and 1
%b? (tl'tz) - atz{cyuy(tl‘tz)} (198) i

G (bqrtp) = atl 3 1€y ¢ (t1,t,)) (196) 4




From (193)-(196):

| €y y(t 1) = eK{m (t) ® [ho(t—Th)h(tﬂ } (197)
: [0)

i.

f C g y(tt) = okim(t) e [ho(t-T&)h(t)]} (198)
|

i' Cs'vdy £t,t) = eK(m (t) @ [ho(t-Td)h(t)]} (199)
.

_ Gy (818D = eK{m, (t) s[no(t-'rd)n(t)]} (200)

It may readily be seen by inspection of Fig., 22 that
ho(t--'l‘d Yh(t) =2 O (201)

for sufficiently large delay times Th. It follows from
(197)-(201) that

C t,t) = C t,t) = C t,t) = C t,t) = 0 202
yoy( ) yoy( yoy( yoy( ) (202)

for sufficiently large ?d' It is assumed that Td is chosen
large enough to validate eq. (202). Since uncorrelated
Gaussian processes are necessarily statistically independeﬁ%l)

it follows from eq. (202) that:

(Vo 9¥53) = R (DL o (75,9,) (203)

£
y¥y ¥, Jo
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From eqs. (178), (177), and (203)

;.' mJ(t) = [fdgdn fyo.% ((.n)(fdglfclfys,(t.',éﬂ)} (204)
{ With the change of variable z = § + n, eq.(204) may be
i} written
() = By y (B5(tyg.¥5)} (205)
where, by definition,
f hy(Elygi¥e) =/ |2=9, 1 tyy(y,,2)dz (206)
E {.} = f/dgdn ¢ (z,n){.} (207)
y090 yos’o 1
{
and fyy is obtained by analogy to eq. (85).
Happily, eq. (206) is seen to be identical to eq. (48).

Thus, the entire analysig of sections IV.B and IV.C,

originally applicable only for deterministic thresholds, is

now found to be directly applicable for stochastic thresholds
as well, From eqs.(70) and (71):

i
h(t|y,,¥,) = (oy (1-r$)¥ p(u)to(p) + p; ¢(p)} (208) i
1
where q
Py ¥,<0 i
2.4 1 !
p = [oy(l-r ) ] Ehy + rucy - you (yoi] ={pqy y0>0 (209)




r—"’ﬂﬂ"‘?"‘"“" :

Eq. (205) represents a formal means of calculating the

mean threshold crossing performance of the adaptive

threshold processor depicted in Fig. 20.

However, the evaluation of eq. (205) appears to

present some significant calculational difficulties,
These difficulties are abviated by means of the approxi-

mate method of evaluation pursued 1in the following
section,

C. Approximations for mJ

Following ref. (26), p. 141, mJ(tl Vo:¥,) is given a

truncated Taylor expansion about the values yo ™

and
Yy
yo '%o'
mJ(t] Yo1¥,)% A + B + /2 (210)
where
A= mJ(tln&o,r%o) 2y (t] ) (211)
B = (ygmm, ) 3y Batl) + (yo-myo>ay0m3ctt.) (212)

Q
I

2
(Yo'"’yo)z ayoyomJ(tl.) + (Vo'"’yo)z ByoyomJ(t' 2) 0 (213)

71

e - s = R e e




The following notation has been employed in eqs. (212) and

(213):
9__
3y0 th(tI.) - gdyo be(’clyo,S'o) g = (214)
Q o 9
9’0 = h .
ayoyo mJ(tl.) = {3y, ﬁJ(tlyo.Yo)z (215) ‘
- m'
yo yO !
Yo ™ myo
From eqs. (205) and (210)
cht) o Eyoyo{A} + Eyoyo{s} + & Eyoyo{C} (218)
From eqs. (207) and (211)-(213): ?
. {A} = h (t]. (217)

Bo¥o g(el)

{B} = 0 (218) ;
By 9o | .‘

{c} 232 th o (t] 23: th.(t].) (218)

. C} = g t . + . t].
5 o¥e v, vy, ML)t oy Oy vy My
From (216)-(219):
2 2 2 2

hy(t) = {1+i(ayo ayoyo + oyo avoyo)} mJ(tl.> (220)
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Further development of eq. (220) 1s simplified by
employing eq. (D-6). for mJ, rather than the crossing rate
function of eq. (208). Ffrom eqs. (D=4) and (209):

Gl
A
e By, 9,0 = (cy) ¢(u) {¢(py) + p; ¢(p)) (221)

where

Py = (hy ~ 9,)/oy (222)

Conailstent with the numerical results obtained thus far, terms
of first and higher order in r have been dropped in writing

eqs. (221) and (222).
From eqs. (22C) and (221):

g
—i) [ 2 .2 2
th -( + ( 9 + gl 9, 223
g(t) =\o, /|1 + ¢ Oy, Pvve T Y, yoyo)] ¢(u)z (223)
Yo'myo
where
L= 0(py) + pyo(py) (224)
It may be shown from (223) and (224) that:
2
NS R ) R e
hi(t) = mCL(t]myo,myo) 1+ o e, * o €q (225)
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3 where
¢;

U%‘ e, 3 #u? - 1) l ‘
::; oy, (226)
F and ;
g = (py)/2L l, (227)
- !
o) yo j

The quantities m_ (t), o, (t), and o, (t) in eq. (225) are

o
calculated by means of eqs. (189), (190), and (191), respectively. i
Finally, the expected number of threshold crossings in a time b

interval T0 may be obtained as:

m,(0,T) = / mJ(t)dt (228)
T
(o]

with mJ glven by eq. (225).

Eq. (225) provides the basis for analyzing a much broader
range of possible adaptive threshold schemes than Fig. 20 might
suggest. For example, straightforward generalizations of eq. (225)
may be applied to the structures of Figs. 22-24. Further numerical
analysis along the lines of Sec.V for various model backgrounds

and candidate processor structures is indicated, but has not

been pursued thus far.




Some qualitative discussion of eq. (228) follows in
the next (and concluding) section of this paper.
D. Discussion
The advantages and disadvantages that accrue to the use
of an Adaptive Threshold (AT) processor may be evaluated by
comparing eq. (225) with the corresponding crossing rate function

for Fixed Threshold (FT) processors:

() = ey (£]¥,0) (229)

The most importunt consideration in computing the False Alarm

Rate (FAR) of FT processors is the factor:

¢(u) = exp [—(my—yo)2/2wy2] (zm)~3 (230)
that enters eq. (229) through eq. (221). As shown in the
numerical examples of Section V, constant threshold processors
operating against non-uniform scenes are most susceptible to
false alarms in the immediate neighborhood of the local maxima
of m (t), i.e., local minima of u®(t). It follows from eq. (230)
that the false alarm rate is an a&tremely sensitive function
of my, increasing at a tremendous rate as the mean current
my(t) approaches Yoo

The potential advantage of AT schemes may be seen by
comparing eq. (230) with the corresponding factor in eq. (225):

- -3 ~ . 2 2
p(u) | (2m) exp [ (my myo) /20y } (231)

y,mm
o Y,
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If the fiiter Ho(f) in Fig. 20 can be chosen such that myo(t)
"tracks" the background-induced variations in m_(t),

the performance-destroying local minima in uz(t) can be
eliminated.

It should be noted that the adaptive threshold performance

advantage just described is only realized when the background

scene is non-uniform. The performance of AT processors is

generally inferior to the performance of FT processors when

the background scene is uniform and of known brightness.
In this case:

FARAT - FARFT(l + FAP) > FARFT

(232)

where

2 2 .
= + . .
FAP (dyo/oy) €y (oyo/oy) Eq (233)

The threshold variance terms, eq. (233), contribute a False

Alarm Penalty (FAP) whenever an AT processor is used when 1t
truly isn't needed.
According to eq. (232), the adaptive threshold false

alarm rate (FARAT) is greater (i.e., worse) than the fixed

threshold false alarm rate (FARFT), assuming that the adaptive
threshold gain K in Fig.20 has been adjusted to achieve




oquivalent target

deteot ton sonstitg vitios for the

LWO provnssors, rendering tho false nlarm rate

3

comparison of wog, (232) a moaningtul one, * 3
1

L/

E

.

g

{
i
y
b
{
g
{
It 1s assumed that the throshotd 1{lter ”o(” rosponds
i
too slowly to supproess fast riso-time targoei-inducoed j
throsho g erossings,  Cf,

for example, tin (nterpolat iy
threshold schome of Fig, 20
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o
For uniform backgrounds, it is not hard to show that:

! (5. Jo )2 = (a2 /AL) (236)

5 and

2 3
(0 [05)° = (A2 /80

(237)
Q

where AL is the noise bandwidth of H(f), and Afo ls the noise

bandwidth of Ho(f) (cf., Fig.20 ). It follows from eqs. (233),

(236), and (237), that:

- ) 2
FAP = (Af /ML) {eq + (88 /8£)% ¢y} (238)

3 Generally, Afo should be chosen smaller than Af to minimize

( the false alarm penalty, eq. (238), and to prevent a too-

: rapid threshold response that would tend to suppress target-

S induced threshold crossings. On the other hand, Afo should

i
be chosen large enough to allow the threshold to accurately

follow most of the structure in the background scene. Clearly,

TSI

the choice for Afo involves degrading system performance :

against uniform backgrounds for the sake of improved performance

against non-uniform bLackgrounds.

i
*Eq. (237) is derived by assuming a rectangular-shaped H(f),

having an upper cut-ofi frequency rU, and o noise bandwidth 1
Af > f .

u




It appears likely that a more favorable trade-off
could be achieved with the receiver structure shown in
Fig. 22, both from the standpoint of

a) decreasing the false alarm penalty, eq. (233), and

b) improving the background tracking properties of m_ (t).

Yo
Eq. (225) and the entire analysis of the preceding section is

easlly adapted to the structures of Figs. 22-24. The false
alarm penalty, eq. (233), decreases roughly as (2N)-i for the
detector of Fig. 23, The improvement in uniform background
performance thus obtained for large values of N is gained at
the expense of degraded performance agalnst cluttered scenes,
as compared to detectors with small values of N. The good
background-tracking capability of the structure in Fig. 22
combined with the low false alarm penalty of the structure

of Fig. 23 can be obtained by employing a two-dimensional
detector array with 'Time-Delay and Integration (TDI) logic.

In order to put this discussion on a concrete quantitative
basis, particular background and target radiance distributions
must be chosen, and the mean current mx(t) calculated by means
of eq. (A-14). The target detection and clutter rejection
capabilities of a given candidate adaptive threshold processor
can than be analyzed by means of eq. (225). Intercomparisons of
the numerical results thus obtained for a variety of different
processor structures should than allow quantitative conclusions

to be drawn concerning such issues as:
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a) the performance penalty caused by failing to match
the sensor's ipnstantaneous tfield-of-view to the angular
size of the target.

b) the potential performance advantages of time-delay
and integration (TDI).

¢) the best value of N, and the desireability of having
different transfer functions Hn(f) for each of the 2N
taps in the tapped delay line structure of Fig. 24.

d) the advantages thut may be gained by employing simple
two-dimensional threshold processing, in which the '"target
signal" Y(t) and threshold function Yo(t) are derived

from detectors scanning at different elevations,

e) the possible advantages of including power-law devices,

or other instantaneous non-linear devices in the

threshold-~establishing circuitry. It is noted that the
propagation of mean values and variances through non-
linear processing elements may be treanted by relatively 3
straightforward meuns.(zg) Thus, the c¢alculation of my , {
and 03 for use in eq. (225) 1s not difficult, for a © b
specif?ed non-linear relationship between Yo(t) and X(t).
The only important obstacle to performing analyses of the 1
kind described above is the lack of high spatial resolution,

radiometric, infrared background lmagery.
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TARGET
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NO YARGET
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Figure 1
A basic threshold comparison receiver. The photodetector
in this figure is "idealized'", in the sense thuat 1t 1s presumed
to have a perfect all«pass electrical frequency characteristic;

the frequency-dependent part of the detector responsivity is

detector filter to obtain H{(f). A "target declaration" s

made whenever the ftiltered current Y(t) exceeds the threshold

level Yo(t)‘

..'1
o
L]
1
i

v s et Pt - oias & -



Figure 2
Part a) of this figure is an illustrative example showing

the mean value m‘(t)'of the random current X(t), as a function
of time. A small "target-like" (i.e., short-duration) dis-

turbance occurring at time t, is superposed on a larger ampli-

1
tude, more slowly varying background. The corresponding
mean current my(t) at the output of the post-detector filterv
(cf. Fig. 1) is shown in part b) of this figure. The slowly-
varying bhackground part of mx(t) is greatly attenuated. By
contrast, the target pulse is attenuated very little, since
its bandwidth 1is matched to that ot the post-detector filter,
A constunt threshold of amplitude Y appears as n hori-
zontal line in Fig. 2b). The time tz, where the mean current
my(t) crosses the threshold with o positive slope, is referred
to as a '"mean-crossing time" in the text. The time tl‘ where

BQ)- my(tﬂ has o local minimum, is colled o "saddle point”

in the text.
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ty 1y

Figure 3
The crossing rate function mJ is shown as & function of

ot s

time, for the example of Figure 2.




m,(0,t)

. J
b | |

ty ts t3
Figure 4
“he expected number of threshold crossings mJ is shown

- 1

as a function of time, obtained as the integral of the

crossing rate function mJ depicted in Fig. 3. The small

Jump in m at t, is associated with the local maximum in

my(t) at t1 shown 1n Fig. 2. The unity increase in m_ at

|
|
|
; J
i time t2 also has its corresponding origin in Fig. 2. The

d
1
|
i
i

absence of a similar effect at t3 (cf. Fig. 2b) is due to

the definition of mJ as a positive-slope crossing rate,
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Figure 5

The average current my(t) depicted in this figure yields
nearly the same curve for the expected number of threshold
erossings mJ(O,t) (ef. Fig. 4) as the my(t) in Fig., 2. It is
assumed only that the peak value and curvature of my(t) at time

£y and the values of tl, Lo and Vo Bre the same in Figs. 2 and 5.




-

g(t)

Figure ¢
A sample function g(t) of the random process G(t) is

depicted as o function of time. The particular sample function

chosen has a zero-crossing at tinme tO The time A 1s chosen
small enough such that the time interval |t - tnl < A brackets

no zeros of pg(t) other than that ut to‘

;
}
|
d
[
i
!

By RN Sy~ 3% -1 s Y



Figure 7
Illustration accompanylng eqs. (48)-(850). Functions

yo(t) and my(t) are an illustrative threshold functiou and
mean current, respectively. When the domnin of Integration
in eq. (48) 1s chosen to satisfy constraints (49) and

(50), the expected number of threshold crossings m. is

dJd

incremented at time t,, but not at times t,, t,, or t,.
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1
oo,
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Figure 8

Figures 8a and 8b depict the time development of the
expected number of threshold crossings calculated by means

of equations (51) and (53), respectively, for the threshold

yo(t) and mean current my(t) shown in Fig. 7.
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—-—-—-XOH + X1)

T T - t

I 1
-T/2 -7 0 T T/2
Figure 11
An illustrative plot of the model background current m‘(t)

is shown as a function of time. The parametric form of the

mode 1 mx(t) s piven by eq. (150). The parameters X, X and
t, correspond respectively to a constant background level, the
object/background peak contrast, and the size of an "object”

in the scene. Depending on whether t is large or small compared
to the syvstem dwell time, the model current mx(t) 1% roepresenta-

tive of a "clutter-like'" or a "target-like'" object, respectively.
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H(f)

1
-fs fo
Figure 12
A representative plot of the model tilter transtor

function H(t)Y is shown as o function of the olectrical

trequency. The parametric form ot H(t) {s given by eq.

(1581). The parameter ro is the center froquency ot the

bandpass characteristic. The parameter tﬂ s a decay time

for the tiltors' impulse response (ef, og. V1), and (s

directly related to the nolse bandwidth ot the riltor by

0q. (G-5). The zero-vrdinate H(O) of H(t) is determined

by the product of fn

A very small number,  The tunction H(L) is normalised to a

peak value of undty.
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Figure 13
Al Lllustrative evaluation of mv(t) {8 plotted as a

function of time, for the model bnekground and rilter
parametors ot eqs. (184)~(188). The assumed parametric
forms for the model filter impulse response h(t) and

the model background mx\t) are given by egs. ((1H49D) and
(100), respectively,  The mean curreont mv(t) plotted in
this tigure is defined by og. (88), and evalunted tn terms

of h(t) and m‘(t) by Means of e, (T3).
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Figure 14
A plot of my(t) E my(t) is shown as a function of time,

; for the model background and filter parameters of egs. (1584)-

. (158)., This curve is the time derivative ot the curve in

Z Figure 13.
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2]
A plot of oy‘(t) is shown as a function of time, for
the model parameters of eqs. (154)-(188). The varlance

2}
oy“(t) of the filtered current Y(t) is defined by eqs. (58),

and evaluated in terms of h(t) and m‘(t) by means of eq. (74).
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Figure 16
A plot ot Cya(t) = va(t) is shown as u function of time,
for the wmodel parameters of ogs, (164)-(168). The quantity
CYZ is the cross-covariance of the tiltered current Y(t) und
its time derivative (et. eoq. 60), and is evaluated by means of
e, (3-23),
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Figure 17
"
A plot of o "(t) is shown for the model parameters of
3]
ags. (16D -(188).,  The variance n?"(t) of the time derivative
ot the filtered current is defined by eq. (59)., and evaluated

by means of eq. (78).
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; NORMALIZED THRESHOLD

Figure 18
The base ten logarithm of the expected number of threshold

crossings m is plotted as a function of the normalized
threshold level, tor the filtered current statistics ot Figs,

13-17. The solid curve is the quantity m obtuined by inte-

7'
grating eq. (70) numerically. The dotted curve my is the
asymptotic approximation to m given by eq. (166). The dashed
curve mpg is the point source approximation to m y culculated

; from eq. (170)., The two approximations to mJ oftfer calcula-

. tlonal advantages, in that neither m, nor mpg require numerical

R integration for thelr calculution, The basic model background and

filter parameters used In calculating these curves are given by
eqs., (154)-(188), It follows from the discussion in Appendix G [
R that eqs. (154)-(158) characterize an object matched in

angular extent to the instantaneous fleld-of-view of the scunning

E
Lo

sensor, 1.e., o "target-like" object. Asg illustrated in this
figure, the point-source aupproximation Mpg provides an excellent

approximation to m, for target-like objects.
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Figure 19

Similar to Fig. 18, except that the fleld-of-view is

now scanned across a clutter-1like" object,

five times
larger in angular extent thah the "target-like" object of
Fig. 18, The solid curve, dotted curve, and dashed curve,

correspond respectively to the quantities m,, my and m

A’ PS’
As tllustrated in this tfigure,
my provides an excellent upproximation to m, tor clutter-
< [¥
like objects.
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4 exp(—j2nfTy) —t Holf) K Yolt)

Xit)

— H(f) — Y(t)

Figure 20
A simple adaptive threshold scheme is illustrated.
The transfer fuhction exp(-2nf Td) introduces a delay

of Td seconds, ensuring decorrelation of the random

processes Y(t) and Yo(t) (cf. Fig. 21), The significance

of the random currents is seen by inspection of Fig. 1.

i
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Figure 21

Luspoction ol this fipure shows that the product

ht )hmu--'l‘dl O whon the delay ¢ime 7
e font by lavpe, Tn this eane, {t

tht the random procesnes \‘UH\ and Yet) are
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Holf) == Yolt)

X(t) - DELAY —= DELAY

{

H(f) - Y(t)

Fipure 22
A simple adaptive threshold schemoe s fllustrated.  'The
delay elements each tutroduce a doelay of '1‘d soconds, The
significancoe of the random curvrents X(t), YOO, and Y ()
{s scen by inspection ot Fig. 1. The block diagram shown

hore ts actually justone part of the threshold processing

receiver shown in Fig, L.
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| L N T on
X(t) DELAYHSS 4+~ DELAY -I-SS ~ DELAY

Hf) = Y(t)

Figure 23
A candidate adaptive threshold scheme 1s i{llustrated that
genernlizes the structure of Fig. 22, The threshold-establishing
approach shown here is realized in terms of a tapped delay line
with 2N tups. Once again, the significance of X(t), Y(t), und

Yo(t)‘ follows (rom Fig. 1.
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Hq(f) Hn(f) Han -1 Han(f)

1 L N 2N -J
X(t) DELAY —}j DELAY ({{ - DELAY

Hf) F——-Y(t)

Figure 24
The tapped delay line aduptive threshold scheme shown

here generalizes the structure of Fig. 23. The transfer
functions Hn(f), n=1,2,...2N at each of the 2N taps of the
tapped delay line are de- " 1 variables, chosen to maximize
the receivers' performance against a particular background
scene, or set of background scenes. There is no a priori
reasonh why the various delays should be chosen as equal

to one another, other than for fabricational simplicity.

More generally, additional degrees of ftreedom are incorporated

by allowing these delays to take on distinct values.

107




APPENDIX A - Calculating the Average Photocurrent from Background
Data

1. Objective
The objective of this Appendix is to show how the

average value
mx(t) - E{X(t)}

of the random current X(t) (c¢t.Fig. 1) can be derived

in terms of
2) high spatial resolution radiometric imagery of
the infrared scene, in the optical passband of interest
b) the postulated Modulation Transfer Function (MTF)
of the optical train of the model sgystem,
¢) the quantum efficiency and physical dimensions
of the focal plane detectors, and

d) the focal plane scan velocity.

The basic result to be derived is eq. (A-14).

2. The Focunl Plane Irradiance

In order to calculate m‘(t), it is first necessary to
obtain an expression for the average irradiance mE(x,y) that
would be meusured in the focal plahe of the model system

in terms of the averuge aperture irradiance mEo(x.y)~1

pory R PR i v §

-

lThe uperture irradiance is a random process due to photon !
noise. Thus, following the usual convention of random ;
process theory, the complete ensemble of aperture irradiance i
functions iy denoted by a capital letter, E(x,y). A single
member of the ensemble is denoted by a lower case letter,
a(x,y). The capital letter E is used to denote both
irradiance and the process of statistical expectation; however,
the context of usage should eliminate any possibility of con-
fusing which of these two meanings is meant.
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The meun aporture ifrradiance Mgy 1s charucteristic of a

particular infrared scene, and may be estimated by means

)
of  radiometric Thermul Imaging System(l'“) (118) of

higher spatial resolution than the model system, It iy

also

highly desirable that the dwell time ot tho TIS be much

larger than that ot the model system, since the anulysis

requires knowledge of the moean irradiance mEO estublished

by averaging over the photon fluctuation stuatistics of the

4
ineident light.”

The spectral filter chosen for use with the TIS should

miteh the combined TIS opticul train/photodetoctor spectral

response to that of the model system.  This 1s necessary

because there Is no way to reliably caleulate the trradiance

ot scene measured In a wavebuand 5\1 in terms of the

irradianee of the same scone meastred in o different specetral

bund MYy,

Once mro(x\y) haus been specified, the "transtormed mean
aporture ireadiance” En(fﬁ‘rv) is obtatned as
oo (A=1)
€n“.\"ty) = (n:EO(x.y))

24

“A TIS with o dwell time matched to the dwell time ot the
model system would wcetually be measuring u single mombor
u‘(x.y) of the ensemble ¥ (x,y)., rather than the expected
viilue mo~(x.y) of the apeRture irradiance, Averaging out
the phoggn noilse by cithoer (nereasiney the TIS dwell time
ar by performing frane addition decreases the noisiness ol
the TIS image, and improves the goodness of the TIS

imagery as an estimate of mF(x.y).




wherao

F{.} denotes the Fourfor transtform ot the bracketed .
quantity |

(f‘,f Y are spatinl frequencies corresponding to the
Xy spuce coordinates x and y, truespectively

Employing vector notation eq. (A-1) may be written us ]

€L .
old) = pimyx))

The transtormed tocal plane irradisnce &) iy obtained ;
by multiplyinucfu(£)by the Modulation Tratuster Function (MTF) !
that charnctorizes the image blurring oftfect ot the model

systems' optical train:

(L) = TP €.(f) . K (A-2

(8]

Iy

where K 1is a constunt. Assuming tho conventional 1
QO

MTE normnlization:
MTY (Q) = ]

sonservation of energy roequires that:

2

5 " ro/(zf*)

where:

Ty ™ the transmittance of the opties

£# = the focal length ratio of the optics -




Finully, the mean tocal plane irradiance is obtained by

tuking the inverse Fourler trunstorm of &(f):
. sLoery .
mu‘k) = F e} (A=3)

3. The Time-Varying Averuage Photocurrent

The response of & photovo ltale detector centered at
position p in the focul plane may be written as:
) ] i ]
. E 3y »
m(r ) =/ Rp (X dm p(X,+g )dr (A=d)
X W \
Mot

where the surtace inteopral extends over the area Adut
ot the detector, and dnlts an element ol surtacoe
aren (ef. Flg.o ALY,

The focenl plane irradiance my und the mean current my
in edq. (A=1) are ensemble averapge valuws over the photon
Fluctuation statisties of the light. TFor the purpose of
anilysts, the electricual frequency churacteristic of the
detoctor has been lumped togetner with the transtor function
af the post~detoector filtor. Thus, by definition  the
curroent rosponsivity Rl in oq. (A=4) s iundepondont of
the frogquency of any temporal modulation that may be imposed

on the ireradiwnco,
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i M ARARALE ol

A Upuptl function” P({ Y is now detined for the detoector
such that

Peg ) o=l A dot {A=3)
v ¥ iy Adt.‘ t

Assuming that the detector hus o conter of symmetey, 8Q

}
thut ' i
b
) \
Py ) o= Pex )
and that the responsivity RI is unitform on the detoector
surtace., o, (A=1) hecomoes
|
t } +
m Ly, = Ry A POL Y mp gty {
B 4 t . ] t . ‘
Sk T Ry e Pr=g ) mp(y tg g A=)
whore A s the tatintt o toeal plane,  With the following
change ot variable ;
- . c'
[ WA ¥ ’ .
{
i
v, (A=8) becomes

meir ) = Ry im POy ) mply) dy (A=T)

e o i
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e —
VPSSO
o R E



Defining the tol Llowing two-dimensional Fourierp trantforms:

&L - FAma ()| (A-8)

PeE) = FIP(R) ! (A=)

Eq (4~7) may be pecast with the ald of the Fourier convolu-

tion theorem as

Me(ky) = Ry eTHngy) e (A=10)

Movreover, it followy trom eq. (A-2) that

&) = MTFCL) &)+ K (A=11)

wher o

e’o(_{) ts the spatial Fouriep transtorm ot

the
aperture ifrradiance, and
M’I‘F(,{,) s the modulation transter function
ot the optivs.
From (A-10) and (A~1L1)
f ve = T ,‘1 PRI W] 3 '
m.\,,\,\'”) RI P IMTF G L‘.'U(,{,)} (A=-12)
where, by detinition .
MTF (£ 5 P(g) MTF({) . K, (A=13)
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For infinitesmal "point detectors" P({) 1s efrectively unity,

sO that

NTF = MTF . K, ' i
1

for this specinl case. More generally, the effect of .3
having a finite detector size can be accounted for by
multiplying tﬁe MTF of the optinal system by the transformed
pupil function of the detector, as in Eq. (A-13),

Finally, scanning effects are included by anllowing the

vector K in Fig. Al to trace the appropriate trajectory.

For u uniform scanning rate

Ko ™ Xt

- - .

where t is the time, and N is the focal plane scan velocity.

Eq, (A-12) then becomes

m (t) = Ry MTF'(£) &,(f) exp (J2nf yt)df  (A-14)

The current responsivity RI miy be written as:

RI = ne/hy (A-15)

whar e

N et e

h = Planck's constant (Joule-sec. /photon)




-
Joulo-see, )
b= Planck's constant photon

. -1 !
Vo ooptieal froquency [mw ‘

L hhotoeloetrons
o oquuntum efticiency {ncidont photons
coulomby
¢ o= oloctronte charge vloetron

The tfocal plane scoan veloetty in oq. (A~14) s given by

v
v ) - A .
|\\., =y (A-16)
whore
- |
w o= the dotector width [cm]

tg ™ systom dwell time [-u.ur]

[t miy bo shown from Q. (A-16) that:

[P SOS

' w 9 3 Y Al ™
Iyl = 2a LRD /T (A=17)

whove

e e o e i

the focal length ratio of thoe opt tos dinwnxtuulm»}

j an * the diameter of the optical aperrure [vm]

, ’I"l.‘ 2 systoem frame time [m-\u] !




A
0'
)
A ¢
A‘O
/
r' 4
/co-t-/‘L 3

0
Fig. A.1 Focal Plane Geometry

The focal plane irradiance mE(K)is stationary in the

coordinate system with origin 0. Vector Eo locates the
center of a detector of area Ad@t' For scanning sensors,

Ro is a function of time.

116

aaa LT
N . o 2ia,
[ SNy U P VOO VU VSOV S U RS




AFPENDIX B. NOISE CURRENT CORRELATION FUNCTIONS

The object of this Appendix is to verify eqs.
which are needed to evaluate eq.

rate mJ(t).

(73)-(76)
(70) for the threshold crossing

The starting point for this discussion is the linear system

input/output relation between the random processes X(t) and

Y(t) (cf. Figure 1):

Y(t) = / du X(u)h(t-n) ’

-0

It follows directly from (B-1) that:

CYY(tl,tz) = {i duda CXX(A,u) h(tl-A) h(tz—u)

where the covariances Cyy ?Pd'cki are defined by

Cyy(tyrtp) = ELYCE))=m (£ LY(ty)-m (t5)3 )

Cxx(k,u) z E{EX(A)-mx\A)J EX(u)—mx(u)J}
and where

my(t)

E{Y(t)}

mx(t) z E{X(t)!

(B-~1)

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)

|
a
!



With the definition

Z(t) = Y(t) (B-7)
it follows from eq. (B-3) that ;
CYZ(tl.t2) = atzfcyy(tl.tz)} (B~8) |
. [l
¥ 1
L and
| 1
, |
E sz(tl,tz) = atlatz{cyy(tl,tz)} (B-9) 1
E From eqs. (B-2), (B-8) and (B-9) %
i CYZ(tl,tz) = [f dudA Cox (Ao 1) h(tl-A) atzh(tz-u) (B~10) |
. QO
] 1
: 1
Chp(tysty) = {i dudA Cxx(x,u) atlh(tl-A) atzh(tz—u) (B~11) ‘
Setting t1=t2-t in eqs. (B~10) and (B-11), and noting that 1
. 2 - 2. 2
sz(t,t) oz(t) E{2°(t)} - mz(t) (B-12)
:
3 it follows that
Cyz{ ) = J/ dudd Cyu(A:1DB(E=A) B h(t-2) (B-13)

2 A . . ‘
0 (t) = fi dpdd € (A,u) 3 h(t=A) D h(t-u) (B-14)




An expression for Cxx(x,u) is now required before the

analysis
can be carried any further.
Setting t1~t2=t in eq. (B-2), and noting that
2 - 2 2

ny(t,t) - oy(t) E{Y“(t)} my(t) (B-15)
it follows that

2 x

g (t) = S/ dudAd C__(),u)h(t-A)h(t-u) (B-16)

y e XX

However, an adaptation of eq. (4.3.13) on p. 115 of ret. (12)

leads to:

2 ® 2
cy(t) = ¢ [ du h™(t-u) m, (W)

(B-17) -
- tX]
where e 1s the electronic charge. Consistency between eqs.
(B-16) and (B-17) requires that
Cux(As) = e m (1) S(A-u) (B-18)

where &§(.) is the Dirac deltus function.
like eq.

Covariance functions
(B-18) are characteristic of non-stationary white

noise.29) From eqs. (B-13), (B-14), and (B-18),

Cyp(t,t) = e S du h(t-u) 3 h(t-u) m (1) (B~19)

-0
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o2(t) = e s du [oen(t-w)] % m (1) (B-20)

-0
Noting that

h(t-p) 3, h(t-p) = & 3, h2(t-u) (B-21)
t t

it follows from eqs. (B-19) and (B-21) that

Cyp(t,t) = & @ 3,0 / du h(t-p) m (u)) (B-22)

- -]
From (B-17) and (B-22)

Cyg(t,t) = # at{ci(t)} = o (t) & (t) (B-23)

Defining r(t) as

r(t) = Cyy(t,t) Eoy(t)oz(t)] -1 (B-24)

it follows from (B-23) and (B-24) that
r(t) = {5,(t)/0,(t)) (B-25)
Taking the expected value of both sides of eq. (B~1l) leads
to the result

my(t) = J dum, (u) h(t-u) (B~26)

- 00
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Taking the time derivative of (B-1):

ﬁ Y(t) = Z(t) = £ du X(u) 3 h(t=p)

-C0

| Taking the expected value of both sides of (B-27):

m,(t) = S du m (u) 3 ,h(t-u)

-0
Ioec.

: m,(t) = at{_i du m (u) h(t-p)}

§ From eqs. (B-28) and (B-28)

m,(t) =t (t)

3 Defining the convolution operator as in eq. (77), eds.
;& (B-17), (B-20), (B-29), and (B-25) may be written as:
.

-t my(t) - h(t) © mx(t)

2 2
oy(t) e ? (t) ® mx(t)

o2(t) = e[a(t)}? @ m (t)

mz(t) my(t)

r(t) = {5 (t)/0,(t))

Equations (B-30)-(B-34) are lidentical to eqgs. (73)-(76).
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(B=27)

(B-28)

(B-29)

(B-26),

(B-30)

(B-31)

(B-32)

(B-33)

(B-34)
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Appendix C, Relationships Between FAR, PD, and mJ

1, The Relationship Between FAR and m

The complete description of an IRST sensors' performance
under a given set of operational conditions requires the
simultaneous specification of both the False Alarm Rate (FAR) and
the Probability of Detection (PD) for a "target' within the

sensors' field of view. However, both '"falsse alarms'" and target

detections are manifested as threshold crossings by the signal

processor. Thus, the object of this Appendix is to relate the

traditional IRST performance measures, PD and FAR, to the

expected number of threshold crossings my over prescribed
intervals of time.

- e T

»
It is assumed that the average current mx(t) 1s known on

an interval of time |t] < T/2

The expected number of threshold crossings on the interval

|t] < 17/2 is defined as my(0,T). Defining the false alarm rate as

the expected number of threshold crossings per ''reference

interval" T ret’ the following relationship obtains between
|

FAR and my :

FAR = (T}ef/T) mJ(O,T) (C-1)

l"'I‘he quantity mx(t) may be specified a priori, or it may be

calculated in terms of the radiance of a particular background

scene (as discussed in Appendix A).
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For example, 1if FAR i1s defined as the average number of

false alarms per week, Tref is set equal to the number of

seconds in one week; if FAR is defined as the average number
of false alarms per system dwell time, then Tref is set equal !
to the dwell time (again expressed in units of seconds).

It is implicitly assumed in eq. (C-1),that the scene under
observation does not include a target, so that each threshold

crosgssing that occurs gives rise to a '"false alarm",

i 2, The Relationship Between PD and my: First-Order Approxima-
tion

Although not as straight-forward as eq. (C-1),a relation-
ship between PD and m; can also be established.

As prelude to the definition of PD, a "decision interval"
TD is ftirst defined¢. The interval TD is presumed to bracket

the entire period of time during which the current Y(t) manifests

target-induced fluctuations.

Assuming that a target is present in the scene, the number
of threshold crossings that occur during the interwval TD ig
defined as the integer random variable J. The discrete
probability density function of J 1s denoted as fJ(j).

The probability of detection PD is now defined as the
probability that one or more threshold crossings occur during

the decision interval;:

e by o e e A et Mt

00

Py~1 f_(J) (C-2)
D" S Y




(The likelihood of a background-induced crossinug

during TD has been neglected). Unfortunately, the problem

T e T e

of obtaining a formulation for fJ appears to be quite
{ difticult.(zs) The focus of this paper has been on the
development of formulations for the expected number of

threshold crossings

m; = E{J} = ? ! JfJ(J) (C-3)

In order to eatablish a relationship between PD and my,

eqs. (C-2) and (C-3) are written asg:

o

PD - fJ(l) + I fJ(J) (C-4)
J=2
0
J=2
Assuming that the probability of two or more threshold
crossings is negligible during the decision interval TD’
eqs. (C-4) and (C-5) can be estimated as:
PD o IJ(l) (C-86)

my fJ(l) (c-7)




It follows from (C-8) and (C-7) that
PD = mJ(O,Td) (C-8)

According to eq. (C-B), the expected number of threshold

crogsings during the decision interval TD provides a good

estimate of the detection probability PD, so long as the

probability of two or more crossings during TD is negligible,

3. The Relatlionship Between PD and mJ: Infinite Contrast
Point Targets

An alternate approach is now taken to the problem of

establishing the relationship between m and PD. The

discussion that follows is based on the analysis of Section IV,

and will lead to the same result as before - ramely, that the

expected number of threshold crossings during the decision

interval provides a reasonable estimate for PD.
It is shown in Section IV that for BLIP sensors and
unresolved targets:

my=1-2¢ (Wi (C-9) 1

where ¢(.) 1s the Gaussian distribution function

d(u) w (2v)"§ ? ex 2/
p (-v©/2)dv (C-10)

1
|
‘\

min ° [yo_my(t max )]/ % (t max ) (C-11)




where tmax is the time at which the mean current my(t)

assumes its peak value.

Eq. {C~9) is equal to the exceedance probability of

a Gaussian random variable having a mean and variance é
2 N

of my(tmax) and dy (t max)' respectively. As such, ’
eq. (C-8) is a relatively straightforward generalization 1
of the procedure conventionally used to define P (24)

Once again, one is encouraged to interpret m; a8 &

-y

reasonable approximation to PD'

4. The Relationship Between PD andxn Proposal for a
Second-~-Order Approximation

The first-order approximation to PD discussed in Section

(o}
N

is based on the following logic:
a) The methods discussed in Section IV of this paper are

- y ] ) .

used to obtain a value for my, the first moment (i.e.,

the average value) of the random variable J.

b) Following eqs. (C-8) and (C-7), my is used as an
estimate for fJ(l).

¢) The estimate for fJ(l) established in b) 1s substituted

into the truncated summation tor PD, eq. (C-6).

It appears only reasonable that an improved estimate could

I

be obtained for P. if the variance og of J were known in

D
addition to the mean m ; of J. It will now be shown how knowledge

- ————

of og can be used to calculate a second-order approximation for

PD (compare with (C-6)):
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Py fJ(l) + fJ(Z) (C-12)

Unfortunately, the technique described in this section for

calculating the second-order approximation to PD cannot be im-

plemented until a formulation for 03 is developed analagous to

the formulation for m, in Section III. 1In this connection, it

is noted that Bendat has derived an equation for the crossing

count variance of stationary processes.(27) His result

(cf. also ref. (23)) is far more complicated than the analagous

eq. (E-8) for my. Thus a generalization of Bendat's result for

o§ to the case of nonstationary processes and stochastic threshold

functions may prove to h» a difficult problem,

It 1is now assumed that a formulation for cg can be obtained,

analagous to the development for my in Section III. Analagous to
eq. (C-3):
[ -]

2 2
I 3 £.(3) -m (C-13)
{1~1 J } J

Y

2
J

1111

Qg

Substituting eq, (C-3) into (C-13) leads to the following

expression for cg:

(C-14)
o§ = 2 (1) [lme(‘l)] + o af(2) [l-fJ(l)—fJ(2)] + Ej

where

E; = p g% -2 [f(l) + 21’(2)] t 3t -[ r .ji’]z (C-15)
Jns J-S J.-.-S
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. |

Assuming that the probability of three or more threshold

crossings 1s negligible during the decision interval,

eqs. (C-3) and (C-14) are approximated as:

m; = fJ(l) + ZfJ(2) (C-16)

03 & fJ(l) &’chlﬂ + 4fJ(2) E—fJ(l)-fJ(Zﬂ (C-17)

Calculation of m according to the method of section III, and

an analagous calculation for cg, enables egs., (C-16) and

(C=17) to be solved for approximations to fJ(l) and fJ(Z)‘

The second-order approximation to PD is then obtained by
means of eq. (C~12).

If eq. (C-12) is found to yield an appreciably different
result than egq. (C-8), third-order or even higher order

approximations to PD may be required; otherwise, the first-
order eq.

(C-8) is then verified as a good approximation for

PD.

128

b e
P il - S . i

e e oD i o e 2eme

R



APPENDIX D. CRAMﬁR AND LEADBETTER'S EQUATION

)
Cramer and Leadbetter(l4)have derived the following
equation for the rate of positive slope zero crossings of
a non-stationary Gaussian random process Y(t) (cf. ref.(14),

eq. (13.3.2)):

they, (t;0) '(gf) (1_r2)§ ¢(;§> {¢(n) + nd(n)} (D-1)
where

n = [czn_rz)*]‘l[my - (1“%";1)] (D~2)
and the quantities m_, o , ¢ and r are defined as in eq. (70).

y' Ty T2z’
On p. 288 of ref. (1l4) the statement is made that the

mean rate at which Y(t) crogses a curve yo(t) can be obtained

from eq. (D-1) simply by making the substitution

e m, (my-yo) (D=3)
in eq. (D-1).
From eqs. (D-1) - (D=3)
o
thae () -"'"z'(lzi({('+¢ } (D=4
CL ;yo) Uy -x ) ¢ l.l) ¢ pl) pl (pl) - )

with p1 defined by eq. (67).

Eq. (D-4) is similar, but not identical, to eq. (70). The
relationship between eq. (D-4) and eg. (70) will now be explained,
and it will be shown that there is an assumption implicit in
(D-4) that limits the range of its validity.
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Two alternative formulations for the curve crossing rate
are derived in Section III.B.

a) Assuming thot both conditions (49) and (50) must
{ be satisfied before a threshold crossing can be '"counted!
l by the processor, the resulting expression for the
crossing rate is given by eq. (51).
4 b) Assuming that only condition (50) need be satisfied
before a threshold crossing can be counted by the processor,
the expression for mJ is given by eq. (53).
It is now proposed that a third type of processor might

be constructed, sensitive only to those threshold crossings 3
for which

y(t) > y,(t) (D-5)

I.e., it 1s now assumed that the processor requires the |

satisfaction of inequality (49), but not (50). It then
follows from eqs. (48), (D-5), and (52), that:

my(t) = 1(=) = I(y,) (D-6) 3
From eqs. (D-6), (63), and (87)-(6Y9):

(8]
| 2z
1 iy (t) -(;y) (1-r)% g (u) (6(py) + P o(p))) (D-7)

e S Tty




Noting that eqs. (D-4) and (D-7) are identical, it follows
that assumption (D-5) must he implicit in Cramér and
Leadbetter's prescription for calculating the curve crossing
rate.

An asymptotic analysis of eq. (D-~4) similar to that of

Section III.D.3 leads to:

analagous to eq. (115). It follows from (D-8) that the

mean crossing count My, is sensitive to all threshold
crossings for which my > yo. For example, M~ is incremented
3 in Fig. 7. Thus, the
asymptotic character of My, reflects the requirement (D-5),

by unity both at time tl and time t

as expected.
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Appendix E - Introduction to Scanning Sensors and
Adaptive Threshold Detectors

1. Scanning Sensors Operating Against Uniform Scenes

a, Current Statistics

When the sensor of Fig. 1 scans across a uniform
background scene, the output current Y(t) is '"statistically
stationary"”. The meaning of statistical stationarity will
now be discussed, as background to the discussion of non-
uniform scenes and non-statiohary processes that follows
in the next section.

It is assumed that the sensor is scanned and re-scanned
over the same scene, and that there are no changes in
either the scene or the sensor from one scan to the next,

The current y(t) during the course of any one particular
scan is called a "sumple function" of the random process Y(t),
(The process Y(t), in turn, may be thought of as the infinite
ensemble of possible sample functions.) The current sample

th

function obtained on the n scan 1s designated y(tin). Ve

now consider a particular one of these sample functions, y(t;1),

depicted in Fig. E.1la.

i o e e




The time variations in y(t;l) have their origin in the time-

v

of-arrival tluctuations of the individual photons incldent on

the detector.* Thus, the fluctdations in y(t;1l) are independent

of tho scun velocity and are present rogardloss ot whether the

sensor s scanning or motionlowss.,

*If successive photons arrived at unitform, or othorwise

pradictable, time increments  thoe arrival time ot the "noxt"

photon would be prodictable in advance - in violation of

the Heisonberg uncertalnty principle, Thus, evon nominally
constant-intonsity sources give rise to random photocurronts,

This kind of noise is often called "photon tfluctuation

] - -

noisoe" or "quantum noise', ¥hen the quantum noise associated

with the bLuackground light is the dominant noise type in the
sonsor, the sensor {a sald Lo be oporating in the "Background

Limitod Performance” (BLIP) o ime,

- - - - - - S [P r ‘JJ
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y The average current &t a particular instant of time tc)muy

: be defined as the ''ensemble average':
;

: 1 N -
| m (t,) = lim (N & y(t_ in)} (E-1) ‘
! 39 New a=1 = ©

In order for Y(t) to be a statlonary process it is necessary that

: my(t).as defined in eq. (E-1), be independent of time.

Thus,

}_ my(t,) = m(t)

where the times to and tl are totally arbitrary (cf. Fig. E.1).
r

! : Similarly, the mean-square deviation of Y(t) from its average
!
f

value (i.,e., the "variance'" of ¥Y) may be defined at each instant

! of time as

2 1N 2
. 09(t) 2z 1im N 2 [y(t;n) -m (t)]
j b4 y

[ 13}

(E-2)
! N+  pw]

The variance 03, like the mean my, ls independent of time for ‘

{
stationary processes.

Eqs. (E-1) and (E~2) are satisfactory for i1llustrating the '

concept of "ensemble averaging'"; however, it 1s desireable to

F have a different means for actually calculating the values of
\)

my and 03 in terms of standard background and sensor parameters,

e AT

i
b
A
1
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It is firgst necessary to define the average value m, of the

current X(t) (cf. Fig. 1):

m, ™ noQB (E-3)
where
aglectrons
n = quantum efficiency of the detector |photon

coulombs
e = glactronic charge lelectron

Ehotonu]

QB w pverage background photon flux [I Hec

It may be shown that for sensors operating in the BLIP regime

the mean value and vn&iunco of Y(t), originally detined hy

eqs. (E-1) and (E-2), can be calculuted in terms of m, a8 follows:

my = H(OQ) M (F-4)

2 2
uy » Zemfo (E-H)

where H(O) is the zero-ordinate of the transter function U(L)

(ef. Fig. 1), and Af is the noiso bundwidth of HCC). TFor bandposs

H(L), H(O)=0., 1Tt follows from eq. (D-4) that mv~0 for this cnsoe,

Since the scene is spatially uniform, the averagoe photon

flux Q. 1s independent of time., It follows from eqs. (E-3)
B

D)
(E~8) that the mean my and variance oy“ arae wnlso independent

of time, Justifying the claim of stationurity for the currvent

Y(t).
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Assuming' that the transfer function H(f) is normalized

as follows:
max H(f) = 1 (E-8)
t

the noise bandwidth Af in eq. (E-5) may be calculated from
the equation:

at =/ |H(E)|? a4t (E-~T7)
[0}

b. Cros=ing Rates for Constant Threshold Detection

It is now assumed that the signal processor of Fig. 1l is
implemented such that the threshold Yo is equal to a constant.
The constant threshold Yo is depicted on the sﬁmple function
plets of Fig., E.l1. A brief outline will now be given of a
method for caloculating the average number of times that the
random process Y(t) crosses the threshold duringa time‘interval
of duration T seconds. (The relationship between the mean number
of orossings m; and the usual search set performance parameters
PD and FAR 1s discussed in Appendix C.)

The expected number of crossings mJ(O.T) may be written in

terms of the crossing rate mJ as;
mJ(O,T) - mJT (E-8)

According to Rice.(ld)n‘lJ may be calculated as

bl ;
mJ = mJo exp (~u“/2) (E-9)




where

Jo

with Af given by (E-7). Also,

uoE (y,mm)/g, (B-11)

Withnw and Oy given by eqs. (E-4) and (E=3),

The quantity u defined by eq. (E-11) may be thought of
as 4 normalized threshold level.

It follows from eq. (E-9) that the expected number of
threshold crossings drops off rapidly as the threshold level

is increased.

2. Scanning Sensors Operating Against Non-Uniform Scenes

A, Current Statistics

It is now assumed that the sensor of Fig. 1 is scanned a
number of times over the same non-uniform scene, and that there
are no changes in either the scene or the sensor tfrom one scan
to the next. A number of sample functions of the resulting
current process Y(t) are depicted in Fig. E2.

Once again, the ensemble average mean and variance of
Y(t) are defined by eqs. (E-1) and (E-2). However, as will
now be discussed, Y(t) is now a non-stationary procoss, i.e.,

my and oyz are functions of time.
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It ts assumed that the infrared scene encompasses regions

of blue sky and clouds where

| QBS = averuge photon flux incldent on the detector when
blue sky 1s being observed.
QC = average photon flux incident on the detector when

cloud ia being observed.
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The photon flux Q in eq, (E-3) is seen to be a function
of time: Q takes on the value QC when a cloud 1is in the field of
view, and a different value QBS when the scanning tield of view
includes only blue sky. Thus, the process Y(t) iy non-stationary
when the scene is non-uniform, since the mean and variance ot
Y(t) are seen from eqs. (E-3) - (E-8) to be functions of time.*
The time-varying mean value my(t) is superposed as a
dashed curve on each of the sample functions y(t) deplcted in
Fig. E. 2.

*For the present, it suffices to wsay that the forms of

0qs. (E~-4) and (E=5) indicate that a time-varving mx must

give rise to time varying my and oyz. However, it should

be noted that eqs. (E-4) and (E-53) are only strictly valid

for stationary processes, i.e., for time-invariant m . Thus,

for a given time-varying mx(t), the correct values of my and
n

oy“ cannot generally be calculated from (E-4) and (E-5).

Generalizations of (E-4) and (E-5) strictly valid for both

stationary and non-stationary processes are given by eqs.(8)

and (7).
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b. Crossing Rates f{or Constant Threshold Detection
The performance of a constant threshold signal processor
(cf. Fig. 1) against a non-uniform scene can be characterized

in terms of the quantity:®*

mJ(O,T) -,{ mJ(t)dt (E-12)

where T  is the time intervgl |t] « T/2, and
where m;(0,T) is the number of times that the current Y(t)
can be expected to cross the threshold level Yo during the
time interwval TO. Eq. (E=12) is a straight forward
generalization of eq. (E-8), to ullow for the possibility ot
time-variable threshold crossing rates mJ.

As long as the time variation of mx(t) 1s slow compared
to the time variation of the impulse response h(t) of the
post-detector filter (ct.Fig. 1), au good estimate for mJ(t)

can be obtained from eq. (E-9).

*Cf. Appendix C for a discussion of the relationship of

mJ(O,T) to the usual IRST performance parameters PD and FAR,
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The following steps are then followed in calculating mJ(O,T):
(1) The time-varying mean current mx(t) is derived from the
time-varyiug photon irradiance Q(t) by means of eq. (E-3).
(A detuiled derivation ot mx(t) in terms of the background
rudiance distribution is provided in Appendix A.)

(11i) Estimates of m!(t) and oyg(t) are obtained from

eqs. (E-4) and (E-5). (More rigorously, eqs. (6) and

(7)  may be used to obtain m (t) and oyz(t).)

(1i11) Eq. (E-=1l) is evaluated for u(t).

(iv) Eq. (E-9) is evaluated for mJ(t).

(v) Eq. (E-12) is evaluated tor mJ(O,T).

Numerical examples followlng the above prescription
typically show that the crossing rate funotion cht) ig extremely
sharply peaked (ct. Fig. E.3). Consequently, appreciable
contributions to mJ(O,T) only accrue in the hear neighborhood

of points such as t_ in Fig. E.3. It is shown in Section III.D

p
that eq. (E-12) may be approximated us:

m;(0,T) = thy(t ) St (E-13)

p
with mJ(tp) obtained trom eq. (E-9). The quantity Stp is the
erfective interval of time during which my(t) remains in the near

neighborhood of its peak value, from the standpoint of crossing

‘rate canlculations., An expression for th is derived in Section

III.D (cf. eq. 16 or eq. 96).
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The implications of eq. (E-13) for system performance
are illustrated with the aild of Fig. E.4.
The large, relatively slowly varying maximum centered
at tp in Fig. E.4 is presumed to have its origin in the
background scene. The narrower, lower amplitude spike
centered at t, in FPig. E.4 is presumed to be due to a 'target'.
It follows from eqs. (E-13) and (E-9) that the likelihood
of a clutter-induced threshold crossing grows rapidly as the threshold
level Yo in Fig. E.4 is lowered, It follows from the unalysis
in Section III.D that a clutter-induced threshold crossing (i.we.,
a "false alarm") becomes a viritual certainty when the threshold
level actually intercepts the mean current my(t). There is
apparently no way for the constant threshold processor to
detect the target peak at to without also incurring a false

alarm arising from the clutter peak cehtered at tp.
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C. Crcssing Rates for Ideal (CFAR) Adaptive Threshold Detection

The performance of an adaptive threshold processor is
illustrated with the aid of Fig. E.5,

The processor is presumed to have some means for deriving
high-confidence estimates for my(t) and uy(t),dei’ined as n‘ny and Sy'
respectively. When my(t) is "slowly-varying" the processor

establishes yo(t) as:

Yo(t) = my<t> * Ky ey(t) (E~14)

The threshold is interpolated through periods of 'rapidly

varying" my(t) by means of a smoothing filter. (cf,, for

example, the neighborhood of t in Fig. E.5). The adaptive

threshold constant KAT in eq. (E-14) is u design parameter.
From eqs. (E-11) and (E~14)

u(t) = Kyp [ay(t)/oym] + [ﬁmym - mym] [o,() (E-18)

When the estimation errors are sufficiently small

oy(t) o Uy(t) (E-16)

mg(t) o my(t)

it follows from (E-15) thoat

u(t) = KAT
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Thus, u(t) is rendered time-invariant by the adaptive

threshold processor when there is no rapidly-varying target

contribution to my(t). When there are no targets in the

scene, th: mean current my(t) is assumed to be slowly~-
varying, and the expected number of crossings during the time

interval To may be calculated from eqs. (E-9), (E-12), and
(E=17), as:

2
mJ(O,T) "rg mJo ey (mKAT/B) dt (E-18)
6]

Since both mTO and KAT are time- nvariant, eq. (E-18) becomes

2
mJ(O,T) - mJo exp (—KAT/2) T (E-19)

Eq. (E-19) has the same form as the c¢rossing rate expression

for uniform scenes, eq. (E-8).
The kind of processor just described has been called a

Constant False Alarm Rate (CFAR) processor, since the threshold

crossing rate 1s now independent of time, i.e., a crogsing is no

more likely to occur when scanning a region of non-uniform back-

ground than when scanning a region of uniform background. E.g.,

with reference to Fig. E.5, the crossing rate is now no greater

at tp than at any other time,
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It should bo borno in mind that the CFAR processor s a

non-roplisablo tdonl:

Lt has beon assumed thnt the procossor

{s ablo to ostimata thoe quantitios mv(t) and uv(t) to as hiph

a proclaion as destirod,

vit luas tfor my and

time-dopendonce

e ool s s

in

\)

o,

Genorally, orrors in thoe estimatod

are unavoidable, glving rise to approciably

(B=18) tor u(t).
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Figure .1

Throe saple fupetions of the random cuvrront Y(U) are
shown as functions of time,  The current Y(L) i taken at the
output ot the post-detector filter as the sensor (s oscanned
over 4 uniform scoene (of, Fig, 1Yo The smmple funetions avoe
desighated y(tn), n=i,2,3,... Thoe sample functions display
rundom time varlations caused by time-otf-avreival tluctunt fons
of the individual photons incident on the detoctor,  Since
tho current Y(t) i{s stationnry, the ensenble average mean
vinlue (variancoe) dotined Ly og. (E-1) (oq. ¥=2) {a the
samer at time Ln ax b time t]. whore tine:s tU and ‘l are

arbitrary,
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Figure E.2

Three sample funhctions of the random current Y(t) are
shown as functions of time. This figure is similar to Fig.
E.l, except the sensor is now presumably scanned over a non-
uniform scene. The time-varying ensemble average my(t) of
Y(t) is shown as a dashed curve superposed on each of the three
depicted sample functions (solid curves). The ensemble
average my is gtill defined by eq. (E-1); however, the fact

that my is now a functicn of time implies that Y(t) is now

a nonstationary random process.
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my (t)

I
tp
Fligure E.3

)] ' -
t

Part a) is an illustrative plot of my(t) Vs. t, where
my is the mean value of the filtered current Y(t) (ct. Fig.
13). Also shown is a constant threshold current Yo lying
above the peak value of my. The function my(t) takes on
its peak value at the time tp.

Part b) 1s a plot of the threshold crossing rate mJ(t)

corresponding to the threshold Vo and mean current my(t)
of part a). The entire contribution to the crossing rate
integral, eq. (E-12), accrues in the very near neighborhood

of t_.
p
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Figure E.4

This figure i1llustrates a critical shortcoming of
constant threshold processing. The slowly varying maxima
centered at tp presumably has its origin in the non-
uniform background scene. The narrower, lower amplitude
splke centered at to is due to & target. The likelihood
of a false alarm (i.e., a clutter-induced threshold crossing)
grows rapidly as the threshold level Yo is reduced. There
is no way for the constant threshold processor to detect the
target peak at to without also incurring a false alarm
arising from the dlutter peak centered at tp.

A plot of the threshold crossing rate mJ(t) corresponding
to this figure would show that the probability of a false

alarm is far greater at time tp than at any other time,
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Figure E.B

This flgure lllustrates an important potential advantage
that accrues to the use of adaptive threshold processing.

The mean current my(t) is the same as for Fig. E.4, with a

clutter peak centered at time tp, and a lower-amplitude

target spilke centered at time to. The adaptive threshold

y (t) 1s presumably able to accurately track the slowly
o]
varying background signal, but not the more rapidly varying

target gignal. Thus, target detection is assured, while

the probability ot a false alarm is kept acceptably small.

As contrasted with the situation of Fig. E.4, the probabillity

of a false alarm is now no greater in the neighborhood of

time tp than at any other time.
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APPENDIX F. THE EDGEWORTH CORRECTION TO lh'r

The objective of this Appendix is to estimate the relative
error in mJ due to the assumption ol a strictly Gaussian

probability density function for the current Y(t) (ct. Fig., 1):

y -m
y(y “ Uy $ Uy (F-

where ¢(.) is the Gaussian density function, my is the mean value

of Y(t), and oyz

is the variance of Y(t), defined respectively
by eqs. (F-3), (58), and (58),

It will be shown that the assumption of non-stationary
Gaussion statistics for the filtered current Y(t) is totully
Justitiable, for typical sensor parameters and background radiances.

The starting point for this analysils {s a truncated
Edgeworthserioes oxpunsion (la)of fv(y), us appropriate for
describing Poisson shot noise procgsses Y(t): %

. & ¢ -1 . - ) 2 4 (3) Oy
£ (y) = o7 pQu) - (Ay/60,7) 0777 (u) (F-2)

L]
Strictly speaking, Y(t) 1is o conditionul Poisson shot noise,
with n wideband thermal level density tunction., However, it is

well known that such procosses may be modeled as constant level

Poisson shot processes when the response time of the detector
is very long compared with the coherence time of the incident

light. (cf. Ret. (12))
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where
-4 9
pu) = (2n) exp (-u“/2
s uy = d® p(u)/du®
U o= (y—my)/oy
my = h(t) W mx(t)
nyn = e h%(t) W ()

2.3
ky e” hV(t) » mx(t)

The quantities e, h(t), and m‘(t). in eqgs.

following eq. (76). Eqs. (F~7) and (F-8),

from Ref. (12).

From eqs., (F=2)-(F-d):

t’y(y) o L’y_l tb(u) tl + ,.:y_}

vhere the error term uy 1s given by

soom (4 /60 (uu-3))
Ly (.y/ uy u(u= =

(F-3)

(F-4)

(F=8)

(F-8)

(F-7)

(F-38)

(F=6)=~(F-8) are defined

the variance and third

semi-invariant of the nonstationary process Y(t), are adaptod

(F-9)

(F-10)




According to eq. (F-10), the relative error increases

as u3; however, it follows from eqs. (F-3) and (F-8) that the

density function fy is of negligible amplitude for large values !
of u, It will now be assumed that values of u greater than

alght are of no importance, since

£,(y) = olexp(-32)} = g(10"1%), umg (F-11) ;
In order to establish a reasonable upper bound for Ey' the 1
value u=8 will be used in eq. (F-10):
e < 800 (A /66 3) (F-12)
y y y
Also,
3 3 3
. Ay/9u7 < Ay max/%" min) (F~13)
i !
% where, from eqs. (F-7) and (F-8): )
; |
| 2 = g
? o min ™ © Mx min fm he(t)dt (F-14) %
[ - ¥
“A « ¢ n F ndtat (F-15)
y max x mox ° !
i
i
{ From (F-14) and (F-15): %
\ -3

- -.& t
y max 0y min (mx max/mx min)(mx min/e’) X (F-16)
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where

«| x

w ® -3/2
X 5[/‘ ha(t)dﬂ [f hz(t)dt] (F-17)

The number of photoevernts per second is now defined as:

V Emy min/e (F-18)
Assuming that the scene brightness doesn't change by more than

a factor of two from one dwell time to another:

(m < 2 (F-19)

X mux/ mx min)

From eqs. (F-12), (F-13), (F~16), (F-18), and (F-19):

e, < 200 voiy (F=20)

It ls easy to show that for a rectangular-shaped h(t)

of duration Tpe ea. (F=17) becomes
X = rD‘* (F-21) 4
where p is the system dwell time, From (F-20) and (F-21):

Ey < 200(vTD)‘* (F-22)




For a current of 100 namps and a dwell time of 160 psec.
(cf. eqs. (154) and (G-14))the number of photoelectrons per
dwell time is given by:

10~7 ooul.sec”? ‘
VT 1.6x10"19 coul.electron™t (1.6x10'4sec)
I.e.,
vty = 10° (F-23)

From eqs. (F-22) and (F-23):

ey < 0,02 (F-24)

In general, eq. (F-21) greatly over-estimates the value
of x, and the corresponding upper bound for ey is much smaller
than indicated by eq. (F-24). This 1s because h(t) 1s the
impulse response of a bandpass filter, taking on negative values
as well as positive values, Thus, there is cancellation in the
numerator of eq. (F-17).

It will now be shown that the relative error in ry(y)
can be used as an estimate for the relative error in mJ. This
point is most eausily illustrated by employing eq. (D~8) for mJ.
However, either of the crossing rate expressions (51) or (53)
could be used instead, at the expense of complicating some of

the equations,
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From eqs. (D-6) and (52):

hy(t) = ; (z=9,) f,y (¥,,2) dz (F-25)
o

For the numerical examples that have been worked thus far
{(such as those of Section V), it has been found that the

correlation coefficlent of Y(t) and i(t) is much smaller

than unity:

r(t) << 1 (Fr-28)

where r(t) is defined by eq. (B-24). Since it has just been
shown that Y(t) has very nearly a Gaussiar density function, and

since uncorrelated Gaussian variates are siatistically independent,

it follows that

£ .
Y¥(yy,m) = £.(y,) £4(2) (F-27)

From eqs. (F-25) and (F-27):

[+ ]
Bp(8) = 1y(vg) [ (2=, fy(2)dz (F-28)
o
Substituting eq. (F-9) into eq. (F-28), it is meen that €y

provides an estimate for the relative error in mJ, as well

as the relative error in fy.
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APPENDIX G. PARAMETER CHOICE RATIONALE FOR
FQUATIONS (149) AND (150)

The object of this Appendix ls to describe a rationale
for choosing the background and filter parameters x_, X0 T
fo' and t, (cf. eqs, (149) and (150)).

It is common IRST design pructice(4) to choose the

noise bandwidth of the post-detector filter as follows:

AL = (er)“l (G~1)

where

Af = noise bandwidth of the post-detector filter
Tp ™ the time required for the scanning sensor
to sweep ucross a target.,

It i3 not difficult to show that

Tp ™ uTTF/Zw (G-2)

where
W = the angular extent of a typical target, at the
desired detection range (radians)
TF = the system "frame time," 1i.,e., the time required

for the sensor to complete n full 360" nzimuthal

sweep,
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It may be shown that for the transfer function H(f) of

eq. (151), the noise bandwidth is given by:

pE = (t,/2) [1 + exp (-2nf02t02ﬂ (G-3)

Assuming that

CH(O) = 2 exp (-nf02t02> ¢ 1 (G-4)

it follows from eq. (G-=-3) that
pt = (£ /2)7t (G-5)
Eq. (G=5) is the Jjustification for referring to to as a "noise

bandwidth parameter" of the post-detector filter,
From eqs. (G-1) and (G-0):

ty = T V3 (G=6)

Assuming, for example, that

Uy = 1 mrad,. (G=7)

TF = ] sec.

S

1t follows from eqx. (G-2) and (G-8) that

PRSP TeTN

. = 159 psec. {G-8)

T
and

to = 225, usec,. (G~9)




Assuming (somewhat arbitrarily) that

H(O) = 1073 (G-10)

it follows from eq. (G-4), (G=-9), and (G=10) that

fo = §.91 kHz (G-10)

Thus, a rationale has beaen provided tfor choosing the filter

narametors fo and tQ of eq. (149).

To complete the problem specitflcation, it remains to choose

values for the purameters of eq. (150):

Analagous to aq.

whaore

+ w the time roquired for the sensor to scun
ucross the object
x, " background brightness paraneter (amperes)

X, " objact contrast parameter (dimensionless)

(G=-2):

T = aOTF/2w (G-11)

W, - object angular extent (radians)
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The form of eq. (180) is general enough to describe both
"target~like'" and '"clutter-like' objects, Target-1like

objects are detined by:

; G, S Om (G-12)

Clutter-like objects are defined by:

a4, 7 Oq (G-13)

It follows from eqs. (G-2), (G-8), and (G-11) that the

parameter value

T = 159 usec. (G=~14)

e o ST & -

corresponds to a target-like object Gy Gy

The value for X, in eq. (150) is obtained as follows:

where

X, = unifoerm background current (amperes)
RI = current responsivity (amperes/watt)
popt = optical powsr incldent on a single detector

(watts)

The optical power PO in eq. (G-15) is calculated as:

pt

popt - LB Aap w (G-18)

Lwin e, s, i AU




e . L

where

L

p = in-band background radiance (watts cm'z. -1 l
b = aren of the telescope aperture (cmz)

w = instantaneous field-of-view (sr)

The current responsivity RI in eq. (G-15) is calculated as: \

e
Ry - By (G-17)

where

n = quantum efficiency (photoelectrons

(incident photon)™ 1)

= glectroniec charge (coulombs (electrnn)'l)

h

Planck's constant (joule sec (photon)'l)

v = optical frequency (sec.-l) ‘

It follows from eq. (G-17) and the numerical values ol e and h l

that:

RI = 0,8nA

(G=18)
where

A = average optical wavelength (um)

b s i i e
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It follows from eq. (G-15), (G-16), and (G-18) that

X = 134 numps. (G~19)

for the tollowing assumed parameter values:

2
Aap = 500 c¢m

w= a2 = 1079 sr.

and
Lg = 0.14 mw em™2 st

The value of background radiance given Ly eq. (G-=-20) was obtained

by integrating Fig. 1 of Ref. (28) over the wovelength band

3-5 um,

The assumed value of peuk object contrast, eq,

(155), was
chosen arbitrarily.

It is not diftficult to calculate the value

of apparent contrast radiant intensity corresponding to given

values of X and Xq-
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